Special Issue "Advanced Joining Processes and Techniques 2023"

A special issue of Journal of Manufacturing and Materials Processing (ISSN 2504-4494).

Deadline for manuscript submissions: 31 December 2023 | Viewed by 1648

Special Issue Editors

Department of Mechanical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
Interests: joining processes; materials design; engineering education
Special Issues, Collections and Topics in MDPI journals
Department of Mechanical Engineering, University of Lisbon, 1649-004 Lisboa, Portugal
Interests: metal forming; metal cutting; manufacturing; finite element analysis; experimentation
Special Issues, Collections and Topics in MDPI journals
Institut für Schweißtechnik und Fügetechnik, RWTH Aachen University, Pontstraße 49, 52062 Aachen, Germany
Interests: welding; brazing; adhesive bonding
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue of the Journal of Manufacturing and Materials Processing includes selected papers presented at the 3rd International Conference on Advanced Joining Processes 2023 (AJP2023), to be held in Braga (Portugal), on 19–20 October 2023 (https://web.fe.up.pt/~ajp2023/).

The conference will provide a unique opportunity to exchange information, present the latest results, as well as discuss issues relevant to advanced methods of joining, such as friction stir welding, joining by plastic deformation, laser welding, advanced mechanical joining, adhesive bonding, and hybrid joining.

The focus is on process optimization in experimental and simulation terms, metallurgical and material behaviour associated with joining, engineering properties and assessment of joints, health and safety aspects of joining, the durability of joints in service, industrial applications, and education.

Prof. Paulo A.F. Martins would like to acknowledge the support provided by Fundação para a Ciência e a Tecnologia of Portugal and IDMEC under LAETA- UIDB/50022/2020 and PTDC/EME-EME/0949/2020.

Prof. Dr. Lucas F. M. da Silva
Prof. Dr. Paulo A. F. Martins
Prof. Dr. Uwe Reisgen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Manufacturing and Materials Processing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • joining processes
  • adhesive bonding
  • joining by forming
  • welding
  • experimentation
  • numerical simulation

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3541 KiB  
Article
Mechanical Investigation of Recyclability for Sustainable Use of Laser-Based Metal–Polymer Joints
J. Manuf. Mater. Process. 2023, 7(6), 210; https://doi.org/10.3390/jmmp7060210 - 28 Nov 2023
Viewed by 161
Abstract
Metal–plastic hybrid components combine the strength of metal with the low density of plastic. Due to weight reduction, these components are becoming increasingly important. To reduce the need for raw materials, processes for the recyclability of hybrid compounds are being investigated to reuse [...] Read more.
Metal–plastic hybrid components combine the strength of metal with the low density of plastic. Due to weight reduction, these components are becoming increasingly important. To reduce the need for raw materials, processes for the recyclability of hybrid compounds are being investigated to reuse the metal part. The aim of this research is to characterize the mechanical bond strength after laser-based cleaning and reuse of the metal component. For this purpose, laser radiation is used to introduce microstructures into the metal surface. Afterwards, the polymer is joined to the metal component with laser radiation. As a reference of the initial mechanical bond strength, the joined samples are examined in a tensile testing machine. The polymer residues remaining in the structured metal surface are removed with different laser-based cleaning strategies. The metal is used again to generate another hybrid joined sample with a new polymer component. The results of the subsequent tests in the tensile testing machine are used for a detailed analysis of the reusability. As a result of this investigation, the laser-cleaned specimens showed significant improvements in bond strength compared to the uncleaned specimens. The process of laser-based cleaning for the reuse of the metallic part of hybrid joined components provides a fundamental procedure for improving the circular economy. In the future, this study should be validated in subsequent investigations on realistic components with complex geometries. Full article
(This article belongs to the Special Issue Advanced Joining Processes and Techniques 2023)
Show Figures

Figure 1

22 pages, 7364 KiB  
Article
A Selective Integration-Based Adaptive Mesh Refinement Approach for Accurate and Efficient Welding Process Simulation
J. Manuf. Mater. Process. 2023, 7(6), 206; https://doi.org/10.3390/jmmp7060206 - 24 Nov 2023
Viewed by 248
Abstract
To save computational time and physical memory in welding thermo-mechanical analysis, an accurate adaptive mesh refinement (AMR) method was proposed based on the feature of moving heat source during the welding. The locally refined mesh was generated automatically according to the position of [...] Read more.
To save computational time and physical memory in welding thermo-mechanical analysis, an accurate adaptive mesh refinement (AMR) method was proposed based on the feature of moving heat source during the welding. The locally refined mesh was generated automatically according to the position of the heat source to solve the displacement field. A background mesh, without forming a global matrix, was designed to maintain the accuracy of stress and strain after mesh coarsening. The solutions are always carried out on the refined computational mesh using a selective integration scheme. To evaluate the performance of the developed method, a fillet welding joint was first analyzed via validation of the accuracy of conventional FEM by experiment. Secondly, a larger fillet joint and its variations with a greater number of degrees of freedom were analyzed via conventional FEM and current AMR. The simulation results confirmed that the proposed method is accurate and efficient. An improvement in computational efficiency by 7 times was obtained, and memory saving is about 63% for large-scale models. Full article
(This article belongs to the Special Issue Advanced Joining Processes and Techniques 2023)
Show Figures

Figure 1

16 pages, 7098 KiB  
Article
Investigation of Single-Pulse Laser Welding of Dissimilar Metal Combination of Thin SUS303 SS and Cu
J. Manuf. Mater. Process. 2023, 7(5), 161; https://doi.org/10.3390/jmmp7050161 - 08 Sep 2023
Viewed by 676
Abstract
The present study investigated the dissimilar metal combination of SUS303 stainless steel (SS) and pure copper C19210 by utilizing a fiber pulse laser to perform lap welding. The weld quality was evaluated through metallurgical and mechanical examinations, including scanning electron microscopy (SEM), optical [...] Read more.
The present study investigated the dissimilar metal combination of SUS303 stainless steel (SS) and pure copper C19210 by utilizing a fiber pulse laser to perform lap welding. The weld quality was evaluated through metallurgical and mechanical examinations, including scanning electron microscopy (SEM), optical microscopy (OM), energy dispersive spectroscopy (EDS), as well as tensile and shear tests. The cross-section of the weld joints was observed to examine the penetration inside the molten zone of the pulse laser welding. The incomplete weld penetration depth was confirmed by analyzing the molten pool geometry, which indicated that the penetration depth was proportional to the pulse heat energy input. EDS analysis demonstrated that interdiffusion and dissolution of Cu and SS occurred inside the weld pool, although only a limited amount of Cu was melted. Microhardness (MH) exploration revealed the hardness of the molten zone was lower than that of the heat-affected zone (HAZ) on the SS side, while the hardness on the Cu side, closer to the molten zone, was higher. The results of the tensile test indicated that the fracture occurred in the HAZ on the Cu side, displaying a dimpled fracture mode characteristic of ductile fracture. Full article
(This article belongs to the Special Issue Advanced Joining Processes and Techniques 2023)
Show Figures

Figure 1

Back to TopTop