10th Anniversary of Inorganics: Inorganic Solid State Chemistry

A special issue of Inorganics (ISSN 2304-6740). This special issue belongs to the section "Inorganic Solid-State Chemistry".

Deadline for manuscript submissions: closed (31 October 2023) | Viewed by 19410

Special Issue Editors


E-Mail Website
Guest Editor
Chair of Solid-State and Quantum Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
Interests: quantum chemistry; solid-state chemistry; solid-state physics; crystallography
Special Issues, Collections and Topics in MDPI journals

E-Mail Website1 Website2
Guest Editor

E-Mail Website
Guest Editor
Institut für Anorganische Chemie, Universität Stuttgart, 70569 Stuttgart, Germany
Interests: solid state chemistry; materials chemistry; synthesis; crystal growth; structure-property relationships
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Inorganic Solid-State Chemistry, Saarland University, Campus Building C4.1, 66123 Saarbrücken, Germany
Interests: inorganic-organic interface; materials characterization; nanomaterials; polymers; nanoparticle synthesis; mechanochemistry; continuous production of compounds
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Chemistry, Saint Petersburg State University, Universitetskii pr., 26, Petergof, 198504 St. Petersburg, Russia
Interests: quantum and computational chemistry; inorganic and coordination chemistry; organometallic chemistry; organic chemistry; catalysis; non-covalent interactions; machine learning and artificial intelligence in chemistry
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Wolverhampton School of Sciences, Faculty of Science and Engineering, Wolverhampton University, Wulfruna Street, Wolverhampton WV1 1LY, UK
Interests: solid state chemistry; materials chemistry; metal phosphonates; luminescence; antimicrobial materials; photonic materials; MOFs; functional oxides; zeolites

E-Mail Website
Guest Editor
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
Interests: synthesis of new hierarchical wasteform materials for the effective immobilization of nuclear waste in persistent architectures; crystal growth of oxides, fluorides, chalcogenides; luminescing and scintillating materials

Special Issue Information

Dear Colleagues,

It is not at all surprising that solid state chemistry, a key pillar of inorganic chemistry, has grown enormously within the last decade, and there is significant progress not only in synthesis, structure, and properties of solid phase materials, in particular but not restricted to non-molecular solids. As solid state chemistry is inextricably linked to and strongly overlaps with solid-state physics, mineralogy, crystallography, ceramics, metallurgy, thermodynamics, materials science, and electronics, plenty of novel findings are happening at the contact line, with a strong emphasis on the synthesis of novel materials and their characterization. Not only has significant progress been made in melt methods, solution methods, and gas reactions, characterization of crystalline and amorphous solid-state materials has improved quite a lot. And let’s not forget that there is an increasing influence of theory, so theoretical chemistry targeting the solid state, computer modeling and artificial intelligence are currently supporting the busy solid state chemists in their daily work. Finally, there is a plethora of exciting applications in which solid-state compounds play a decisive role. This Special Issue dedicated to 10th Anniversary of Inorganics focuses on Inorganic Solid State Chemistry. Both experimental and theoretical studies, fundamental and applied research manuscripts (original research articles and comprehensive review papers ) are very much welcomed for consideration. We therefore invite all solid-state researchers worldwide to contribute their research to our Special Issue, dedicated to the 10th anniversary of Inorganics.

Prof. Dr. Richard Dronskowski
Prof. Dr. Christian Julien
Prof. Dr. Rainer Niewa
Prof. Dr. Guido Kickelbick
Dr. Alexander S. Novikov
Prof. Dr. Gary Hix
Prof. Dr. Hans-Conrad Zur Loye
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • solid-state synthesis
  • solid-state characterization
  • solid-state properties
  • solid-state theory
  • solid-state applications

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 2152 KiB  
Article
Structural Evolution and Hydrogen Sorption Properties of YxNi2−yMny (0.825 ≤ x ≤ 0.95, 0.1 ≤ y ≤ 0.3) Laves Phase Compounds
by Hao Shen, Valerie Paul-Boncour, Ping Li, Lijun Jiang and Junxian Zhang
Inorganics 2024, 12(2), 55; https://doi.org/10.3390/inorganics12020055 - 07 Feb 2024
Viewed by 981
Abstract
The YxNi2−yMny system was investigated in the region 0.825 ≤ x ≤ 0.95, 0.1 ≤ y ≤ 0.3. The alloys were synthesized by induction melting and corresponding annealing. The substitution of Mn for Ni (y = [...] Read more.
The YxNi2−yMny system was investigated in the region 0.825 ≤ x ≤ 0.95, 0.1 ≤ y ≤ 0.3. The alloys were synthesized by induction melting and corresponding annealing. The substitution of Mn for Ni (y = 0.1) favors the formation of a C15 structure with disordered Y vacancies against the superstructure of Y0.95Ni2. For y = 0.2 and 0.3, Mn can substitute in both Y and Ni sites. Single-phase compounds with a C15 structure can be formed by adjusting both the Y and Mn contents. Their hydrogen absorption–desorption properties were measured by pressure–composition isotherm (PCI) measurements at 150 °C, and the hydrides were characterized at room temperature by X-ray diffraction and TG–DSC experiments. The PCIs show two plateaus corresponding to the formation of crystalline and amorphous hydrides. The heating of the amorphous hydrides leads to an endothermic desorption at first and then a recrystallization into Y(Ni, Mn)3 and YHx phases. At higher temperatures, the Y hydride desorbs, and a recombination into a Y(Ni, Mn)2 Laves phase compound is observed. For y = 0.1, vacancy formation in the Y site and partial Mn substitution in the Ni site enhance the structural stability and suppress the hydrogen-induced amorphization (HIA). However, for a larger Mn content (y ≥ 0.2), Mn substitutes also in the Y sites at the expense of Y vacancies. This yields worse structural stability upon hydrogenation than for y = 0.1, as the mean ratio r(Y, Mn)/r(Ni/Mn) becomes larger than for y = 0.1 r(Y, ☐)/r(Ni/Mn). Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Figure 1

14 pages, 6033 KiB  
Article
Ba5Sb8: The Highest Homologue of the Family of Binary Semiconducting Barium Antimonides BanSb2n−2 (n ≥ 2)
by S. M. Gayomi K. Samarakoon, Alexander Ovchinnikov, Sviatoslav Baranets and Svilen Bobev
Inorganics 2024, 12(1), 3; https://doi.org/10.3390/inorganics12010003 - 20 Dec 2023
Viewed by 1678
Abstract
A novel binary compound within the Ba–Sb phase diagram, Ba5Sb8, was synthesized by combining elements with an excess of Sb in an alumina crucible. Structural elucidation was performed using single-crystal X-ray diffraction. This compound crystallizes in the orthorhombic space [...] Read more.
A novel binary compound within the Ba–Sb phase diagram, Ba5Sb8, was synthesized by combining elements with an excess of Sb in an alumina crucible. Structural elucidation was performed using single-crystal X-ray diffraction. This compound crystallizes in the orthorhombic space group Fdd2 with unit cell parameters of a = 15.6568(13) Å, b = 35.240(3) Å, c = 6.8189(6) Å, adopting its own structure type. The most distinctive features of the structure are the eight-membered [Sb8]10− polyanionic fragments which have no known precedents among antimonides. They are separated by five Ba2+ cations, which afford the charge balance and enable adherence to the Zintl–Klemm formalism. Ba5Sb8 is the highest known member of the homologous series within the family of barium antimonides BanSb2n−2 (n ≥ 2), all of which boast anionic substructures with oligomeric moieties of pnictogen atoms with varied lengths and topologies. Electronic structure calculations indicate an indirect narrow bandgap of ca. 0.45 eV, which corroborates the valence-precise chemical bonding in Ba5Sb8. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Graphical abstract

12 pages, 3850 KiB  
Article
Exploring the Structure and Properties of VwSeyTe2−y Mixed Crystals in the VTe2–VSe2 System
by Sophia Kurig, Fabian Ketter, Anne Frommelius, B. Viliam Hakala, Jan van Leusen, Karen Friese and Richard Dronskowski
Inorganics 2023, 11(12), 481; https://doi.org/10.3390/inorganics11120481 (registering DOI) - 15 Dec 2023
Viewed by 1357
Abstract
Vanadium (IV) chalcogenide materials are of increasing interest for use in catalysis and energy conversion-related applications. Since no ternary compounds are yet known in the V–Se–Te system, we studied ternary VwSeyTe2−y (w = 1.10, 1.13; y [...] Read more.
Vanadium (IV) chalcogenide materials are of increasing interest for use in catalysis and energy conversion-related applications. Since no ternary compounds are yet known in the V–Se–Te system, we studied ternary VwSeyTe2−y (w = 1.10, 1.13; y = 0.42, 0.72) phases crystallizing in space group P3¯m1 (no. 164). Two single-crystal specimens with differing compositions of a solid solution were obtained using the ceramic method. All products were characterized by either single-crystal or powder X-ray diffraction. The lattice parameters increase with rising tellurium content in accordance with the larger ionic radius of the tellurium anion compared to selenium. The chemical compositions were confirmed by energy-dispersive X-ray spectroscopy. Furthermore, magnetic measurements mostly revealed antiferromagnetic properties. Simultaneous differential scanning calorimetry/thermogravimetric analyses in a nitrogen atmosphere showed endothermic decomposition accompanied by the formation of VN. The decomposition of VSe and VTe was observed in an argon atmosphere. The results of this work can serve as a basis for the synthesis of new phases in the V–Se–Te and related vanadium chalcogenide systems. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Graphical abstract

12 pages, 2090 KiB  
Article
Nb2S4(CS2NH2)4—A New Precursor for NbS2 and Its Transition Metal Inserted Derivatives
by Sebastian Mangelsen, Patrick Zimmer, Christian Näther and Wolfgang Bensch
Inorganics 2023, 11(12), 478; https://doi.org/10.3390/inorganics11120478 - 14 Dec 2023
Viewed by 1207
Abstract
Transition metal inserted NbS2 (TxNbS2) compounds receive great attention due to their intriguing and diverse magnetic and electric transport properties. Typically, these compounds are prepared by high-temperature synthesis from the elements, which is time and energy-consuming and yields [...] Read more.
Transition metal inserted NbS2 (TxNbS2) compounds receive great attention due to their intriguing and diverse magnetic and electric transport properties. Typically, these compounds are prepared by high-temperature synthesis from the elements, which is time and energy-consuming and yields highly crystalline products. So far, no route for preparing these compounds from precursors by thermal decomposition has been reported. Herein, we report the synthesis of a dithiocarbamate of niobium Nb2S4(CS2NH2)4 as a precursor for the synthesis of NbS2 by this preparative strategy. Furthermore, we demonstrate that a co-decomposition with dithiocarbamates of transition metals (here, Co and Pd) is a viable route for the synthesis of TxNbS2-type compounds. This is a promising route for the exploration of these compounds’ properties in the form of, e.g., nanocrystalline or thin film samples. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Graphical abstract

12 pages, 3886 KiB  
Article
RbEr2AsS7: A Rubidium-Containing Erbium Sulfide Thioarsenate(III) with (S2)2− Ligands According to RbEr2S(S2)[AsS2(S2)]
by Katja Engel and Thomas Schleid
Inorganics 2023, 11(12), 465; https://doi.org/10.3390/inorganics11120465 - 01 Dec 2023
Viewed by 1068
Abstract
The new rubidium-containing erbium sulfide thioarsenate(III) with the structured formula RbEr2S(S2)[AsS2(S2)] was obtained from the syntheses of elemental erbium (Er), arsenic sesquisulfide (As2S3) and rubidium sesquisulfide (Rb2S3) [...] Read more.
The new rubidium-containing erbium sulfide thioarsenate(III) with the structured formula RbEr2S(S2)[AsS2(S2)] was obtained from the syntheses of elemental erbium (Er), arsenic sesquisulfide (As2S3) and rubidium sesquisulfide (Rb2S3) with elemental sulfur (S) at 773 K as transparent, orange, needle-shaped crystals. RbEr2AsS7 crystallizes monoclinically in the space group C2/c with a = 2339.86(12) pm, b = 541.78(3) pm, c = 1686.71(9) pm and β = 93.109(3) ° for Z = 8. The crystal structure features complex [AsS2(S2)]3− anions with two S2− anions and a (S2)2− disulfide dumbbell coordinating end-on as ligands for each As3+ cation. Even outside the ligand sphere of As3+, S2− and (S2)2− can be found as sulfide anions. Two distinct Er3+ cations are surrounded by either nine or seven sulfur atoms. The [ErS9] polyhedra are corner- and face-connected, while the [ErS7] units share common edges, both building chains along [010]. These different chains undergo edge connectivity with each other, resulting in the formation of corrugated layers, which are held together by Rb+ in chains of condensed [RbS9] polyhedra. So, a three-dimensional network is generated, offering empty channels along [010] apt to take up the As3+ lone-pair cations. Wavelength-dispersive X-ray spectroscopy verified a molar Rb:Er:As:S ratio of approximately 1:2:1:7 and diffuse reflectance spectroscopy showed the typical ff transitions of Er3+, while the optical band gap was found to be 2.42 eV. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Graphical abstract

12 pages, 2056 KiB  
Article
Solid Solutions LnxU1−xC2 with Ln = Tb, Dy, Ho, Tm, and Lu Showing Ideal Vegard Behavior
by Christian Tobeck, Heiko Wende and Uwe Ruschewitz
Inorganics 2023, 11(12), 457; https://doi.org/10.3390/inorganics11120457 - 25 Nov 2023
Viewed by 1096
Abstract
The reaction of UO2 with the respective lanthanide metal and purified graphite in an arc-melting furnace led to the formation of solid solutions of the composition LnxU1−xC2, with Ln = Tb, Dy, Ho, Tm, and Lu. [...] Read more.
The reaction of UO2 with the respective lanthanide metal and purified graphite in an arc-melting furnace led to the formation of solid solutions of the composition LnxU1−xC2, with Ln = Tb, Dy, Ho, Tm, and Lu. They all crystallize in the tetragonal CaC2 type structure (I4/mmm, Z = 2). Elemental analyses of selected samples (EDX) confirm that the composition of the resulting solid solution is in reasonable agreement with the nominal (weighed-in) composition of the starting materials, i.e., a significant evaporation of the lanthanide metals during the arc-melting synthesis does not occur. The lattice parameters of the solid solutions were extracted using Le Bail fits of high-resolution synchrotron powder diffraction data (beamline P02.1, DESY, Hamburg, Germany; beamline BL 09, DELTA, Dortmund, Germany), revealing ideal Vegard behavior for all five solid solutions. XANES investigations on all compounds at the Ln-LIII and U-LIII edges reveal that the occupancies of the U-6d orbitals decrease with increasing x, whereas the occupancies of the Ln-5d orbitals increase, pointing to an electron transfer from the uranium to the lanthanide cations. Examination of the shifts of the absorption edge (E0) leads to the same finding. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Graphical abstract

26 pages, 14955 KiB  
Article
The Use of Rapid Precipitation to Synthesise Multivariate UiO-66 Metal–Organic Frameworks for Photocatalysis
by Ehsan Ezzatpour Ghadim, Marc Walker and Richard I. Walton
Inorganics 2023, 11(12), 455; https://doi.org/10.3390/inorganics11120455 - 24 Nov 2023
Viewed by 1704
Abstract
A rapid synthesis method is used to form multivariate metal–organic frameworks (MTV-MOFs) with the UiO-66 structure, where precipitation occurs upon mixing solutions of ligands and metal salts at temperatures less than 60 °C. The materials include mixtures of metals and ligands, Ce/Zr-UiO-66(1,4-NDC/BDC), Ce/Zr-UiO-66(1,4-NDC/2,6-NDC), [...] Read more.
A rapid synthesis method is used to form multivariate metal–organic frameworks (MTV-MOFs) with the UiO-66 structure, where precipitation occurs upon mixing solutions of ligands and metal salts at temperatures less than 60 °C. The materials include mixtures of metals and ligands, Ce/Zr-UiO-66(1,4-NDC/BDC), Ce/Zr-UiO-66(1,4-NDC/2,6-NDC), Ce/Zr-UiO-66(1,4-NDC), Ce/Ti-UiO-66(1,4-NDC), and Ce/Ti-UiO-66(BDC-NH2) (NDC = naphthalene dicarboxylate, BDC = benzene-1,4-dicarboxylate, BDC-NH2 = 2-amino-benzene-1,4-dicarboxylate). Phase purity was determined by powder X-ray diffraction (PXRD), with a broadening of the profile indicative of nanoscale crystallites, verified by scanning electron microscopy (SEM). The molar ratio of metals and organic ligands in Ce/Zr-UiO-66(1,4-NDC/2,6-NDC) was confirmed by X-ray fluorescence (XRF) and solution 1H nuclear magnetic resonance (NMR) after digestion, respectively. Analysis of the adsorption of dyes by the MTV-MOFs showed that a pseudo-first-order model accounts for the kinetics. The effectiveness of photocatalytic degradation of two cationic (methylene blue and rhodamine B) and two anionic (Congo red and Alizarin Red S (AR)) dyes was studied under UV and visible light. The most effective photocatalytic degradation was found between 1 and 15 min towards both cationic and anionic dyes by Ce/Zr-UiO-66(1,4-NDC/2,6-NDC). Measurements of recyclability and photostability showed retention of crystallinity after five cycles of use and exposure to light for 17 h, as confirmed by PXRD. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Graphical abstract

11 pages, 2753 KiB  
Article
Spin Canting and Weak Ferromagnetism in a New 2D Coordination Polymer with the Co(II) Chain Bridged by a Single End-to-End Azide
by Yi-Lin Kuo, Hsin-Kuan Liu and Chen-I Yang
Inorganics 2023, 11(11), 444; https://doi.org/10.3390/inorganics11110444 - 18 Nov 2023
Viewed by 1296
Abstract
By employing semi-flexible multi-N donor auxiliary ligands, namely 1,4-bis(5-pyrimidyl)benzene (bpmb) in conjunction with azide, novel Co(II) 2D coordination polymers have been successfully synthesized and structurally characterized, along with magnetic analysis. The resulting compound, {Co(N3)(bpmb)(H2O)2·H2O} [...] Read more.
By employing semi-flexible multi-N donor auxiliary ligands, namely 1,4-bis(5-pyrimidyl)benzene (bpmb) in conjunction with azide, novel Co(II) 2D coordination polymers have been successfully synthesized and structurally characterized, along with magnetic analysis. The resulting compound, {Co(N3)(bpmb)(H2O)2·H2O}n (1), exhibits a unique 2D structure comprised of interconnected Co(II) chains bridged by single end-to-end (EE) azide moieties. These chains are further linked by twisted trans-μ2-N,N′-bpmb auxiliary ligands, forming a grid-like network. Additionally, the layers are held together in a 3D arrangement through hydrogen bonding interactions between the coordination water and the N atom of the bpmb ligands. Importantly, magnetic investigations reveal that compound 1 displays weak ferromagnetism attributed to spin canting, with a critical temperature (Tc) of 12 K. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Graphical abstract

19 pages, 6580 KiB  
Article
Structural Phase Transitions in the Double Salts (NH4)2PO3F·NH4NO3 and (NH4)2XO4·3NH4NO3 (X = Se, Cr)
by Matthias Weil, Thomas Häusler, Barbara Bonneau and Ekkehard Füglein
Inorganics 2023, 11(11), 433; https://doi.org/10.3390/inorganics11110433 - 08 Nov 2023
Cited by 1 | Viewed by 1213
Abstract
In the context of investigating isostructural relationships between sulfates and monofluorophosphates, crystals of the double salts (NH4)2PO3F·NH4NO3 (AFP·AN) and (NH4)2XO4·3NH4NO3 (AX·3AN; X [...] Read more.
In the context of investigating isostructural relationships between sulfates and monofluorophosphates, crystals of the double salts (NH4)2PO3F·NH4NO3 (AFP·AN) and (NH4)2XO4·3NH4NO3 (AX·3AN; X = Se, Cr) were grown from aqueous solutions and structurally characterized using X-ray diffraction and thermal analysis. Whereas the high-temperature forms of the two AX·3AN double salts are in fact isostructural with the sulfate analogue, AFP·AN crystallizes with a reduced amount of NH4NO3 and thus has a unique crystal structure. Both AFP·AN and the two AX·3AN compounds exhibit reversible structural phase transitions. Upon cooling, the monofluorophosphate double salt transforms from the monoclinic room-temperature polymorph (I; P21/n, Z = 4) to the intermediate triclinic polymorph (II; P1, Z = 4) that in turn transforms to the monoclinic low-temperature polymorph (III; P21/n, Z = 4). The two phase transitions (I) → (II) and (II) → (III) are characterized by a significant increase of the unit cell volumes upon cooling. The two AX·3AN double salts transform upon cooling from a disordered monoclinic crystal structure (P21, Z = 2) to a monoclinic polymorph with a doubled unit cell (P21/c, Z = 4). Such a phase transition is not observed for the sulfate analogue. All molecular moieties are fully ordered at −93 °C for the selenate double salt, whereas one of the nitrate anions remains disordered for the chromate double salt even at −173 °C. In all AFP·AN and AX·3AN crystal structures, the nitrate anions play a crucial role during the phase transitions, and an extensive network of N–H···O hydrogen-bonding interactions is responsible for the cohesion of the crystal. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Figure 1

13 pages, 5333 KiB  
Article
Sheaf-like Manganese-Doped Zinc Silicate with Enhanced Photoluminescence Performance
by Xiaohong Li, Xiaozhen Zhang, Yongzhi Yu, Leying Wang, Si Cheng, Hongquan Zhan, Runyuan Liu and Renhua Chen
Inorganics 2023, 11(10), 407; https://doi.org/10.3390/inorganics11100407 - 16 Oct 2023
Viewed by 1208
Abstract
Sheaf-like manganese-doped zinc silicate (Mn-doped Zn2SiO4) was successfully synthesized without surfactant by hydrothermal route using manganese acetate, zinc nitrate, and sodium silicate as precursors. The structure, morphology, and optical properties were well investigated by various analytical techniques, such as [...] Read more.
Sheaf-like manganese-doped zinc silicate (Mn-doped Zn2SiO4) was successfully synthesized without surfactant by hydrothermal route using manganese acetate, zinc nitrate, and sodium silicate as precursors. The structure, morphology, and optical properties were well investigated by various analytical techniques, such as X-ray diffraction (XRD), a scanning electron microscope (SEM), a transmission electron microscope (TEM), and photoluminescence (PL). The results showed the enhancement of crystallinity and an increase in the length of the as-prepared sample, which was achieved by prolonging the hydrothermal time. Based on the analysis of the XRD pattern, it can be stated that the sheaf-like Mn-doped Zn2SiO4 possesses a large lattice distortion compared to pure Zn2SiO4. Moreover, it was observed that hydrothermal times played a crucial role in the PL property. The PL peak intensity of samples located at 522 nm generally increased with the increase in reaction time in the range of 12–48 h. However, when the treating time reached 72 h, the property of PL decreased. The results of the PL spectra showed that Mn-doped Zn2SiO4 obtained by a hydrothermal time of 48 h displayed an efficient luminescent performance. The key to the high PL property mainly lies in the sheaf-like structure and large lattice distortion. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Figure 1

14 pages, 4804 KiB  
Article
Synthesis of High-Crystallinity Mg-Al Hydrotalcite with a Nanoflake Morphology and Its Adsorption Properties for Cu2+ from an Aqueous Solution
by Nai-Cai Xu, Dan-Dan Shi, Ying Zhang, Kai-Peng Zhong, Jing Liu, Qi Zhao, Qiang Gao and Shao-Ju Bian
Inorganics 2023, 11(9), 369; https://doi.org/10.3390/inorganics11090369 - 15 Sep 2023
Cited by 1 | Viewed by 1017
Abstract
A magnesium–aluminum-layered double hydroxide (Mg-Al LDH) with a nano-lamellar morphology was prepared by using a homogeneous precipitation and hydrothermal method, and a calcination product (Mg-Al LDO) of the Mg-Al LDH was also obtained in this work. The XRD, TEM, SEM, FTIR, N2 [...] Read more.
A magnesium–aluminum-layered double hydroxide (Mg-Al LDH) with a nano-lamellar morphology was prepared by using a homogeneous precipitation and hydrothermal method, and a calcination product (Mg-Al LDO) of the Mg-Al LDH was also obtained in this work. The XRD, TEM, SEM, FTIR, N2 ad/desorption, and TG-DTG techniques were employed to characterize the microstructures, morphologies, and thermostability levels of these two materials in detail. The results showed that both the Mg-Al LDH and Mg-Al LDO had mesoporous structures and nanoplate morphologies, with diameters of 50~200 nm. The Mg-Al LDH was transformed into Mg-Al LDO at 773 K in an air atmosphere. The adsorption properties of the Mg-Al LDH were investigated systematically with a copper chloride solution as a simulated waste. The experimental results demonstrated that the pH value of the solution had an obvious influence on its Cu2+ adsorption capacity, and the optimal pH value was approximately 5.0. The adsorption kinetics results showed that the Mg-Al LDH had a rapid adsorption rate, and the equilibrium adsorption capacity was 62.11 mg/g. Additionally, the Cu2+ adsorption could be commendably described using a pseudo-second-order model, demonstrating that the adsorption behavior is regulated by chemical sorption. The adsorption thermodynamic results indicated that the adsorption process was spontaneous at temperatures above 318 K. Moreover, the ΔG0 values decreased as the temperature was raised, which indicated that a higher temperature can cause a greater impetus for Cu2+adsorption. In addition, the positive values of the ΔH0 indicated that the Cu2+ adsorption was endothermic, and the positive ΔS0 values revealed an increase in the confusion at the solid–liquid interface of the adsorbent. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Figure 1

13 pages, 14469 KiB  
Article
Study of the Cathode Pt-Electrocatalysts Based on Reduced Graphene Oxide with Pt-SnO2 Hetero-Clusters
by Dmitry D. Spasov, Nataliya A. Ivanova, Ruslan M. Mensharapov, Matvey V. Sinyakov, Adelina A. Zasypkina, Elena V. Kukueva, Alexander L. Trigub, Elizaveta S. Kulikova and Vladimir N. Fateev
Inorganics 2023, 11(8), 325; https://doi.org/10.3390/inorganics11080325 - 31 Jul 2023
Cited by 1 | Viewed by 980
Abstract
A complex study of the structure, morphology, and electrochemical properties of the Pt20/SnO210/RGO electrocatalyst is presented. The advantage of the chemical synthesis of reduced graphene oxide (c-RGO) compared to thermal methods (t-RGO) is due to the formation of [...] Read more.
A complex study of the structure, morphology, and electrochemical properties of the Pt20/SnO210/RGO electrocatalyst is presented. The advantage of the chemical synthesis of reduced graphene oxide (c-RGO) compared to thermal methods (t-RGO) is due to the formation of graphene plates with amorphous carbon black agglomerates and the chemical composition of the surface. The nature of the interaction between platinum and tin dioxide particles and a conclusion about the formation of heterostructures Pt-SnO2 with the surface interaction of lattices excluding the formation of hetero phases has been established. This achieves high dispersity during the formation of platinum particles without significant agglomeration and increases the electrochemical surface area (ESA) of platinum to 85 m2 g−1 vs. carbon black. In addition, the surface interaction of particles and the formation of hetero-clusters Pt-SnO2 can cause the improved activity and stability of the Pt20/SnO210/c-RGO electrocatalyst. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Figure 1

17 pages, 8996 KiB  
Article
Synthesis, Luminescence and Energy Transfer Properties of Ce3+/Mn2+ Co-Doped Calcium Carbodiimide Phosphors
by Erwan Leysour de Rohello, Yan Suffren, Francis Gouttefangeas, Odile Merdrignac-Conanec, Olivier Guillou and François Cheviré
Inorganics 2023, 11(7), 291; https://doi.org/10.3390/inorganics11070291 - 07 Jul 2023
Viewed by 981
Abstract
Ce3+-doped and Ce3+/Mn2+ co-doped calcium carbodiimide (CaCN2) phosphors were synthesized from doped calcium carbonate and carbon nitride by a solid-state reaction at 700 °C under flowing NH3 using a very short reaction time (1 h). [...] Read more.
Ce3+-doped and Ce3+/Mn2+ co-doped calcium carbodiimide (CaCN2) phosphors were synthesized from doped calcium carbonate and carbon nitride by a solid-state reaction at 700 °C under flowing NH3 using a very short reaction time (1 h). The samples were characterized by powder X-ray diffraction, scanning electron microscopy and their diffuse reflectance and luminescence properties were investigated. Single-doped CaCN2:Ce3+ exhibits a blue emission under near-ultraviolet activation (386 nm) corresponding to the 5d12F5/2 and 5d12F7/2 transitions of Ce3+. Maximum emission is obtained at temperatures lower than 150 K and then progressively decreases up to 387 K, with an 80% drop in the emission at room temperature. Efficient energy transfers from Ce3+ to Mn2+ via a non-radiative dipole–dipole mechanism are evidenced for the co-doped samples, leading to various colored phosphors under near-ultraviolet activation (386 nm). The emission color of the obtained phosphors can be modulated from blue to red through a shade of white depending on the sensitizer/activator ratio. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Graphical abstract

15 pages, 9033 KiB  
Article
Crystal Structure and XPS Study of Titanium-Substituted M-Type Hexaferrite BaFe12−xTixO19
by Kim-Isabelle Mehnert, Manuel Häßner, Yanina Mariella Dreer, Indro Biswas and Rainer Niewa
Inorganics 2023, 11(5), 207; https://doi.org/10.3390/inorganics11050207 - 10 May 2023
Cited by 4 | Viewed by 1443
Abstract
The M-type barium hexaferrite substituted with titanium, BaFe12xTixO19, was synthesized from sodium carbonate flux and the obtained single crystals with a maximum degree of substitution of up to about x = 0.9 were characterized. XPS [...] Read more.
The M-type barium hexaferrite substituted with titanium, BaFe12xTixO19, was synthesized from sodium carbonate flux and the obtained single crystals with a maximum degree of substitution of up to about x = 0.9 were characterized. XPS measurements were carried out for the identification of side products and in particular in order to assign the valence states of the transition-metal constituents. Due to the aliovalent exchange of iron(III) with titanium(IV), an additional charge balance needs to occur. No titanium(III) was detected, while the amount of iron(II) increased in the same order of magnitude as the amount of titanium(IV); thus, the major charge balancing is attributed to the reduction of iron(III) to iron(II). According to the XPS data, the amount of titanium(IV) typically is slightly higher than that of iron(II). This is in line with a tendency to a minor formation of vacancies on the transition-metal sites becoming more important at higher substitution levels according to PXRD and WDS measurements, completing the picture of the charge-balance mechanism. XRD taken on single crystals indicates the distribution of titanium and vacancies over three of the five transition-metal sites. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Figure 1

15 pages, 28813 KiB  
Article
Isostructural Oxides Sr3Ti2−xMxO7−δ (M = Mn, Fe, Co; x = 0, 1) as Electrocatalysts for Water Splitting
by Chandana C. W. Kananke-Gamage and Farshid Ramezanipour
Inorganics 2023, 11(4), 172; https://doi.org/10.3390/inorganics11040172 - 19 Apr 2023
Viewed by 1189
Abstract
The correlation of the electrocatalytic activity with electrical conductivity, oxygen-vacancies, and electronegativity have been studied in a series of isostructural oxides, having the so-called Ruddlesden-Popper structure. The structures of these materials comprise transition metals that are octahedrally coordinated to form a network of [...] Read more.
The correlation of the electrocatalytic activity with electrical conductivity, oxygen-vacancies, and electronegativity have been studied in a series of isostructural oxides, having the so-called Ruddlesden-Popper structure. The structures of these materials comprise transition metals that are octahedrally coordinated to form a network of bilayer stacks. These materials are catalytically active for both half-reactions of water-splitting, namely oxygen-evolution reaction (OER) and hydrogen-evolution reaction (HER). They show a systematic increase in electrocatalytic activity in progression from Sr3Ti2O7 to Sr3TiMnO7, Sr3TiFeO7−δ, and Sr3TiCoO7−δ. The kinetic studies using the Tafel method indicate the same trend across the series, where the best catalyst also has the fastest kinetics for both HER and OER. In addition, the same progression is observed in the concentration of oxygen-vacancies, as well as the electrical conductivity in a wide range of temperatures, 25 °C–800 °C. The material that shows the best electrocatalytic activity, i.e., Sr3TiCoO7−δ, also has the highest electrical conductivity and the greatest concentration of oxygen vacancies in the series. The correlations observed in this work indicate that trends in electrocatalytic performance may be related to the systematic increase in electrical conductivity, electronegativity, and oxygen-vacancies, as well as the electron occupancy of eg orbitals, which can affect the strength of sigma interactions between the catalyst and reaction intermediates. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Inorganic Solid State Chemistry)
Show Figures

Graphical abstract

Back to TopTop