ijms-logo

Journal Browser

Journal Browser

Peripheral Biomarkers in Neurodegenerative Diseases 2.0

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Neurobiology".

Deadline for manuscript submissions: closed (31 March 2021) | Viewed by 90538

Special Issue Editors


E-Mail Website
Guest Editor
Neuronal Circuits Lab, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, Universitat de València, Av. Blasco Ibáñez 15, 46010 València, Spain
Interests: systems neuroscience; brain oscillations; hippocampus; memory processing; attention
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is the continuation of our 2019 Special Issue, “Peripheral Biomarkers in Neurodegenerative Diseases”

https://www.mdpi.com/journal/ijms/special_issues/biomarkers_ND

The knowledge of neurodegenerative diseases has been circumscribed for many years due to its clinical aspects and, in some cases, to different therapeutic attempts. Close to 20 years ago, little was known about the causes of these diseases and of their production mechanisms. The progress made in recent years has been very positive, and new avenues of investigation are being opened. Today, we know that neurodegenerative diseases are mainly the consequence of abnormalities in the processes of certain proteins, which give rise to their accumulation in neurons or in their vicinity, diminishing or canceling their functions. The discovery of these proteins has allowed for their use as molecular or imaging markers of these diseases, such as beta-amyloid in the case of Alzheimer's disease. Therefore, the use of biomarkers in the diagnosis of neurodegenerative diseases has increased in recent years. Biomarkers are events found in the human body that are used to identify a biological state. Clinically, they are very useful to determine the risk, presence, and severity of a disease. Cerebrospinal fluid (CSF) is the most common source of molecular biomarkers in neurodegeneration. On the other hand, neuroimaging also provides important information about the affected brain areas. Among these biomarkers, those which are involved with neuroimaging are usually expensive and their affordability is frequently limited. CSF biomarkers are sensitive and specific, but their use is limited, because a lumbar puncture is required, and thus, they can cause side effects.

Given the impact of dementia on the global population, the scientific community has tackled the quest to find new biomarkers whose availability is easier for both patients and clinicians. Therefore, one strategy is to search for new blood-borne biomarkers. Moreover, due to the lower price and reduced invasiveness, a peripheral biomarker can also provide the chance to serve as a screening test to help the diagnosis of neurodegeneration and to monitor progression and response to a hypothetical treatment.

The purpose of this Special Issue is to collect recent information about peripheral biomarkers in neurodegenerative diseases such as Parkinson's, Alzheimer's, Lewy bodies dementia, multiple sclerosis, frontal dementia, Huntington disease, and others. Papers about molecules useful for diagnosis, evolution, prevention, and risk factors are welcome. We invite authors to contribute original research articles as well as review articles exploring peripheral biomarkers in neurodegeneration. Potential topics include, but are not limited to, the following:

- microRNAs, proteins, and lipids as peripheral biomarkers of Alzheimer’s, Parkinson’s, Huntington, etc.;

- Oxidized or inflammation-related molecules as markers of any neurodegenerative disease;

- New CSF molecules as biomarkers of neurodegenerative diseases;

- Neuroimaging and neuronal activity as biomarkers of neurodegenerative diseases.

Dr. Ana Lloret
Dr. Ana Cervera
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Alzheimer’s disease
  • Parkinson’s disease
  • Huntington disease
  • amyotrophic lateral sclerosis
  • Friedreich’s ataxia
  • Lewy bodies dementia
  • spinal muscular atrophy

Related Special Issues

Published Papers (21 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 2107 KiB  
Article
Exosomal Aβ-Binding Proteins Identified by “In Silico” Analysis Represent Putative Blood-Derived Biomarker Candidates for Alzheimer´s Disease
by Tânia Soares Martins, Rui Marçalo, Maria Ferreira, Margarida Vaz, Raquel M. Silva, Ilka Martins Rosa, Jonathan Vogelgsang, Jens Wiltfang, Odete A. B. da Cruz e Silva and Ana Gabriela Henriques
Int. J. Mol. Sci. 2021, 22(8), 3933; https://doi.org/10.3390/ijms22083933 - 11 Apr 2021
Cited by 12 | Viewed by 6009
Abstract
The potential of exosomes as biomarker resources for diagnostics and even for therapeutics has intensified research in the field, including in the context of Alzheimer´s disease (AD). The search for disease biomarkers in peripheral biofluids is advancing mainly due to the easy access [...] Read more.
The potential of exosomes as biomarker resources for diagnostics and even for therapeutics has intensified research in the field, including in the context of Alzheimer´s disease (AD). The search for disease biomarkers in peripheral biofluids is advancing mainly due to the easy access it offers. In the study presented here, emphasis was given to the bioinformatic identification of putative exosomal candidates for AD. The exosomal proteomes of cerebrospinal fluid (CSF), serum and plasma, were obtained from three databases (ExoCarta, EVpedia and Vesiclepedia), and complemented with additional exosomal proteins already associated with AD but not found in the databases. The final biofluids’ proteomes were submitted to gene ontology (GO) enrichment analysis and the exosomal Aβ-binding proteins that can constitute putative candidates were identified. Among these candidates, gelsolin, a protein known to be involved in inhibiting Abeta fibril formation, was identified, and it was tested in human samples. The levels of this Aβ-binding protein, with anti-amyloidogenic properties, were assessed in serum-derived exosomes isolated from controls and individuals with dementia, including AD cases, and revealed altered expression patterns. Identification of potential peripheral biomarker candidates for AD may be useful, not only for early disease diagnosis but also in drug trials and to monitor disease progression, allowing for a timely therapeutic intervention, which will positively impact the patient’s quality of life. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

28 pages, 7509 KiB  
Article
Utilizing an Animal Model to Identify Brain Neurodegeneration-Related Biomarkers in Aging
by Ming-Hui Yang, Yi-Ming Arthur Chen, Shan-Chen Tu, Pei-Ling Chi, Kuo-Pin Chuang, Chin-Chuan Chang, Chiang-Hsuan Lee, Yi-Ling Chen, Che-Hsin Lee, Cheng-Hui Yuan and Yu-Chang Tyan
Int. J. Mol. Sci. 2021, 22(6), 3278; https://doi.org/10.3390/ijms22063278 - 23 Mar 2021
Cited by 2 | Viewed by 3332
Abstract
Glycine N-methyltransferase (GNMT) regulates S-adenosylmethionine (SAMe), a methyl donor in methylation. Over-expressed SAMe may cause neurogenic capacity reduction and memory impairment. GNMT knockout mice (GNMT-KO) was applied as an experimental model to evaluate its effect on neurons. In this study, proteins from brain [...] Read more.
Glycine N-methyltransferase (GNMT) regulates S-adenosylmethionine (SAMe), a methyl donor in methylation. Over-expressed SAMe may cause neurogenic capacity reduction and memory impairment. GNMT knockout mice (GNMT-KO) was applied as an experimental model to evaluate its effect on neurons. In this study, proteins from brain tissues were studied using proteomic approaches, Haemotoxylin and Eosin staining, immunohistochemistry, Western blotting, and ingenuity pathway analysis. The expression of Receptor-interacting protein 1(RIPK1) and Caspase 3 were up-regulated and activity-dependent neuroprotective protein (ADNP) was down-regulated in GNMT-KO mice regardless of the age. Besides, proteins related to neuropathology, such as excitatory amino acid transporter 2, calcium/calmodulin-dependent protein kinase type II subunit alpha, and Cu-Zn superoxide dismutase were found only in the group of aged wild-type mice; 4-aminobutyrate amino transferase, limbic system-associated membrane protein, sodium- and chloride-dependent GABA transporter 3 and ProSAAS were found only in the group of young GNMT-KO mice and are related to function of neurons; serum albumin and Rho GDP dissociation inhibitor 1 were found only in the group of aged GNMT-KO mice and are connected to neurodegenerative disorders. With proteomic analyses, a pathway involving Gonadotropin-releasing hormone (GnRH) signal was found to be associated with aging. The GnRH pathway could provide additional information on the mechanism of aging and non-aging related neurodegeneration, and these protein markers may be served in developing future therapeutic treatments to ameliorate aging and prevent diseases. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

16 pages, 3797 KiB  
Article
Different miRNA Profiles in Plasma Derived Small and Large Extracellular Vesicles from Patients with Neurodegenerative Diseases
by Daisy Sproviero, Stella Gagliardi, Susanna Zucca, Maddalena Arigoni, Marta Giannini, Maria Garofalo, Martina Olivero, Michela Dell’Orco, Orietta Pansarasa, Stefano Bernuzzi, Micol Avenali, Matteo Cotta Ramusino, Luca Diamanti, Brigida Minafra, Giulia Perini, Roberta Zangaglia, Alfredo Costa, Mauro Ceroni, Nora I. Perrone-Bizzozero, Raffaele A. Calogero and Cristina Ceredaadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2021, 22(5), 2737; https://doi.org/10.3390/ijms22052737 - 08 Mar 2021
Cited by 39 | Viewed by 4355
Abstract
Identifying biomarkers is essential for early diagnosis of neurodegenerative diseases (NDs). Large (LEVs) and small extracellular vesicles (SEVs) are extracellular vesicles (EVs) of different sizes and biological functions transported in blood and they may be valid biomarkers for NDs. The aim of our [...] Read more.
Identifying biomarkers is essential for early diagnosis of neurodegenerative diseases (NDs). Large (LEVs) and small extracellular vesicles (SEVs) are extracellular vesicles (EVs) of different sizes and biological functions transported in blood and they may be valid biomarkers for NDs. The aim of our study was to investigate common and different miRNA signatures in plasma derived LEVs and SEVs of Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Fronto-Temporal Dementia (FTD) patients. LEVs and SEVs were isolated from plasma of patients and healthy volunteers (CTR) by filtration and differential centrifugation and RNA was extracted. Small RNAs libraries were carried out by Next Generation Sequencing (NGS). MiRNAs discriminate all NDs diseases from CTRs and they can provide a signature for each NDs. Common enriched pathways for SEVs were instead linked to ubiquitin mediated proteolysis and Toll-like receptor signaling pathways and for LEVs to neurotrophin signaling and Glycosphingolipid biosynthesis pathway. LEVs and SEVs are involved in different pathways and this might give a specificity to their role in the spreading of the disease. The study of common and different miRNAs transported by LEVs and SEVs can be of great interest for biomarker discovery and for pathogenesis studies in neurodegeneration. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

15 pages, 1485 KiB  
Article
Inflammasome in ALS Skeletal Muscle: NLRP3 as a Potential Biomarker
by Leticia Moreno-García, Francisco J. Miana-Mena, Laura Moreno-Martínez, Miriam de la Torre, Christian Lunetta, Claudia Tarlarini, Pilar Zaragoza, Ana Cristina Calvo and Rosario Osta
Int. J. Mol. Sci. 2021, 22(5), 2523; https://doi.org/10.3390/ijms22052523 - 03 Mar 2021
Cited by 19 | Viewed by 3267
Abstract
Since NLRP3 inflammasome plays a pivotal role in several neurodegenerative disorders, we hypothesized that levels of inflammasome components could help in diagnosis or prognosis of amyotrophic lateral sclerosis (ALS). Gene and protein expression was assayed by RT-PCR and Western blot. Spearman’s correlation coefficient [...] Read more.
Since NLRP3 inflammasome plays a pivotal role in several neurodegenerative disorders, we hypothesized that levels of inflammasome components could help in diagnosis or prognosis of amyotrophic lateral sclerosis (ALS). Gene and protein expression was assayed by RT-PCR and Western blot. Spearman’s correlation coefficient was used to determine the linear correlation of transcriptional expression levels with longevity throughout disease progression in mice models. Kaplan-Meier analysis was performed to evaluate MCC950 effects (NLRP3 inhibitor) on lifespan of SOD1G93A mice. The results showed significant alterations in NLRP3 inflammasome gene and protein levels in the skeletal muscle of SOD1G93A mice. Spearman’s correlation coefficient revealed a positive association between Nlrp3 transcriptional levels in skeletal muscle and longevity of SOD1G93A mice (r = 0.506; p = 0.027). Accordingly, NLRP3 inactivation with MCC950 decreased the lifespan of mice. Furthermore, NLRP3 mRNA levels were significantly elevated in the blood of ALS patients compared to healthy controls (p = 0.03). In conclusion, NLRP3 could be involved in skeletal muscle pathogenesis of ALS, either through inflammasome or independently, and may play a dual role during disease progression. NLRP3 gene expression levels could be used as a biomarker to improve diagnosis and prognosis in skeletal muscle from animal models and also to support diagnosis in clinical practice with the blood of ALS patients. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

14 pages, 289 KiB  
Article
Early CSF Biomarkers and Late Functional Outcomes in Spinal Cord Injury. A Pilot Study
by Rita Capirossi, Beatrice Piunti, Mercedes Fernández, Elisa Maietti, Paola Rucci, Stefano Negrini, Tiziana Giovannini, Carlotte Kiekens and Laura Calzà
Int. J. Mol. Sci. 2020, 21(23), 9037; https://doi.org/10.3390/ijms21239037 - 27 Nov 2020
Cited by 11 | Viewed by 1966
Abstract
Although, biomarkers are regarded as an important tool for monitoring injury severity and treatment efficacy, and for predicting clinical evolution in many neurological diseases and disorders including spinal cord injury, there is still a lack of reliable biomarkers for the assessment of clinical [...] Read more.
Although, biomarkers are regarded as an important tool for monitoring injury severity and treatment efficacy, and for predicting clinical evolution in many neurological diseases and disorders including spinal cord injury, there is still a lack of reliable biomarkers for the assessment of clinical course and patient outcome. In this study, a biological dataset of 60 cytokines/chemokines, growth factorsm and intracellular and extracellular matrix proteins, analyzed in CSF within 24 h of injury, was used for correlation analysis with the clinical dataset of the same patients. A heat map was generated of positive and negative correlations between biomarkers and clinical rating scale scores at discharge, and between biomarkers and changes in clinical scores during the observation period. Using very stringent statistical criteria, we found 10 molecules which correlated with clinical scores at discharge, and five molecules, which correlated with changes in clinical scores. The proposed methodology may be useful for generating hypotheses regarding “predictive” and “treatment effectiveness” biomarkers, thereby suggesting potential candidates for disease-modifying therapies using a “bed-to-bench” approach. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
12 pages, 1027 KiB  
Article
CSF Biomarkers Reflecting Protein Pathology and Axonal Degeneration Are Associated with Memory, Attentional, and Executive Functioning in Early-Stage Parkinson′s Disease
by Linda P. Oosterveld, Tessa I. Kuiper, Nour K. Majbour, Inge M. W. Verberk, Karin D. van Dijk, Jos W. R. Twisk, Omar M. El-Agnaf, Charlotte E. Teunissen, Henry C. Weinstein, Martin Klein, Henk W. Berendse and Wilma D. J. van de Berg
Int. J. Mol. Sci. 2020, 21(22), 8519; https://doi.org/10.3390/ijms21228519 - 12 Nov 2020
Cited by 7 | Viewed by 2020
Abstract
In early-stage Parkinson′s disease (PD), cognitive impairment is common, and a variety of cognitive domains including memory, attention, and executive functioning may be affected. Cerebrospinal fluid (CSF) biomarkers are potential markers of cognitive functioning. We aimed to explore whether CSF α-synuclein species, neurofilament [...] Read more.
In early-stage Parkinson′s disease (PD), cognitive impairment is common, and a variety of cognitive domains including memory, attention, and executive functioning may be affected. Cerebrospinal fluid (CSF) biomarkers are potential markers of cognitive functioning. We aimed to explore whether CSF α-synuclein species, neurofilament light chain, amyloid-β42, and tau are associated with cognitive performance in early-stage PD patients. CSF levels of total-α-synuclein and phosphorylated-α-synuclein, neurofilament light chain, amyloid-β42, and total-tau and phosphorylated-tau were measured in 26 PD patients (disease duration ≤5 years and Hoehn and Yahr stage 1–2.5). Multivariable linear regression models, adjusted for age, gender, and educational level, were used to assess the relationship between CSF biomarker levels and memory, attention, executive and visuospatial function, and language performance scores. In 26 early-stage PD patients, attention and memory were the most commonly affected domains. A higher CSF phosphorylated-α-synuclein/total-α-synuclein ratio was associated with better executive functioning (sβ = 0.40). Higher CSF neurofilament light was associated with worse memory (sβ = −0.59), attentional (sβ = −0.32), and executive functioning (sβ = −0.35). Reduced CSF amyloid-β42 levels were associated with poorer attentional functioning (sβ = 0.35). Higher CSF phosphorylated-tau was associated with worse language functioning (sβ = −0.33). Thus, CSF biomarker levels, in particular neurofilament light, were related to the most commonly affected cognitive domains in early-stage PD. This indicates that CSF biomarker levels may identify early-stage PD patients who are at an increased risk of developing cognitive impairment. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

15 pages, 2539 KiB  
Article
Structural and Functional Brain Abnormalities in Mouse Models of Lafora Disease
by Daniel F. Burgos, Lorena Cussó, Gentzane Sánchez-Elexpuru, Daniel Calle, Max Bautista Perpinyà, Manuel Desco, José M. Serratosa and Marina P. Sánchez
Int. J. Mol. Sci. 2020, 21(20), 7771; https://doi.org/10.3390/ijms21207771 - 20 Oct 2020
Cited by 5 | Viewed by 2469
Abstract
Mutations in the EPM2A and EPM2B genes, encoding laforin and malin proteins respectively, are responsible for Lafora disease, a fatal form of progressive myoclonus epilepsy with autosomal recessive inheritance. Neuroimaging studies of patients with Lafora disease have shown different degrees of brain atrophy, [...] Read more.
Mutations in the EPM2A and EPM2B genes, encoding laforin and malin proteins respectively, are responsible for Lafora disease, a fatal form of progressive myoclonus epilepsy with autosomal recessive inheritance. Neuroimaging studies of patients with Lafora disease have shown different degrees of brain atrophy, decreased glucose brain uptake and alterations on different brain metabolites mainly in the frontal cortex, basal ganglia and cerebellum. Mice deficient for laforin and malin present many features similar to those observed in patients, including cognitive, motor, histological and epileptic hallmarks. We describe the neuroimaging features found in two mouse models of Lafora disease. We found altered volumetric values in the cerebral cortex, hippocampus, basal ganglia and cerebellum using magnetic resonance imaging (MRI). Positron emission tomography (PET) of the cerebral cortex, hippocampus and cerebellum of Epm2a−/− mice revealed abnormal glucose uptake, although no alterations in Epm2b−/− mice were observed. Magnetic resonance spectroscopy (MRS) revealed significant changes in the concentration of several brain metabolites, including N-acetylaspartate (NAA), in agreement with previously described findings in patients. These data may provide new insights into disease mechanisms that may be of value for developing new biomarkers for diagnosis, prevention and treatment of Lafora disease using animal models. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

15 pages, 4312 KiB  
Article
Classifications of Neurodegenerative Disorders Using a Multiplex Blood Biomarkers-Based Machine Learning Model
by Chin-Hsien Lin, Shu-I Chiu, Ta-Fu Chen, Jyh-Shing Roger Jang and Ming-Jang Chiu
Int. J. Mol. Sci. 2020, 21(18), 6914; https://doi.org/10.3390/ijms21186914 - 21 Sep 2020
Cited by 28 | Viewed by 4456
Abstract
Easily accessible biomarkers for Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal dementia (FTD), and related neurodegenerative disorders are urgently needed in an aging society to assist early-stage diagnoses. In this study, we aimed to develop machine learning algorithms using the multiplex blood-based biomarkers [...] Read more.
Easily accessible biomarkers for Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal dementia (FTD), and related neurodegenerative disorders are urgently needed in an aging society to assist early-stage diagnoses. In this study, we aimed to develop machine learning algorithms using the multiplex blood-based biomarkers to identify patients with different neurodegenerative diseases. Plasma samples (n = 377) were obtained from healthy controls, patients with AD spectrum (including mild cognitive impairment (MCI)), PD spectrum with variable cognitive severity (including PD with dementia (PDD)), and FTD. We measured plasma levels of amyloid-beta 42 (Aβ42), Aβ40, total Tau, p-Tau181, and α-synuclein using an immunomagnetic reduction-based immunoassay. We observed increased levels of all biomarkers except Aβ40 in the AD group when compared to the MCI and controls. The plasma α-synuclein levels increased in PDD when compared to PD with normal cognition. We applied machine learning-based frameworks, including a linear discriminant analysis (LDA), for feature extraction and several classifiers, using features from these blood-based biomarkers to classify these neurodegenerative disorders. We found that the random forest (RF) was the best classifier to separate different dementia syndromes. Using RF, the established LDA model had an average accuracy of 76% when classifying AD, PD spectrum, and FTD. Moreover, we found 83% and 63% accuracies when differentiating the individual disease severity of subgroups in the AD and PD spectrum, respectively. The developed LDA model with the RF classifier can assist clinicians in distinguishing variable neurodegenerative disorders. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

20 pages, 3892 KiB  
Article
Serum Tau Proteins as Potential Biomarkers for the Assessment of Alzheimer’s Disease Progression
by Eunjoo Nam, Yeong-Bae Lee, Cheil Moon and Keun-A Chang
Int. J. Mol. Sci. 2020, 21(14), 5007; https://doi.org/10.3390/ijms21145007 - 15 Jul 2020
Cited by 48 | Viewed by 4609
Abstract
Total tau (t-tau) and phosphorylated tau (p-tau) protein elevations in cerebrospinal fluid (CFS) are well-established hallmarks of Alzheimer’s disease (AD), while the associations of serum t-tau and p-tau levels with AD have been inconsistent across studies. To identify more accessible non-invasive AD biomarkers, [...] Read more.
Total tau (t-tau) and phosphorylated tau (p-tau) protein elevations in cerebrospinal fluid (CFS) are well-established hallmarks of Alzheimer’s disease (AD), while the associations of serum t-tau and p-tau levels with AD have been inconsistent across studies. To identify more accessible non-invasive AD biomarkers, we measured serum tau proteins and associations with cognitive function in age-matched controls (AMC, n = 26), mild cognitive impairment group (MCI, n = 30), and mild-AD group (n = 20) according to the Mini-mental State Examination (MMSE), Clinical Dementia Rating (CDR), and Global Deterioration Scale (GDS) scores. Serum t-tau, but not p-tau, was significantly higher in the mild-AD group than AMC subjects (p < 0.05), and there were significant correlations of serum t-tau with MMSE and GDS scores. Receiver operating characteristic (ROC) analysis distinguished mild-AD from AMC subjects with moderate sensitivity and specificity (AUC = 0.675). We speculated that tau proteins in neuronal cell-derived exosomes (NEX) isolated from serum would be more strongly associated with brain tau levels and disease characteristics, as these exosomes can penetrate the blood-brain barrier. Indeed, ELISA and Western blotting indicated that both NEX t-tau and p-tau (S202) were significantly higher in the mild-AD group compared to AMC (p < 0.05) and MCI groups (p < 0.01). In contrast, serum amyloid β (Aβ1–42) was lower in the mild-AD group compared to MCI groups (p < 0.001). During the 4-year follow-up, NEX t-tau and p-tau (S202) levels were correlated with the changes in GDS and MMSE scores. In JNPL3 transgenic (Tg) mice expressing a human tau mutation, t-tau and p-tau expression levels in NEX increased with neuropathological progression, and NEX tau was correlated with tau in brain tissue exosomes (tEX), suggesting that tau proteins reach the circulation via exosomes. Taken together, our data suggest that serum tau proteins, especially NEX tau proteins, are useful biomarkers for monitoring AD progression. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Graphical abstract

22 pages, 1950 KiB  
Article
The Inflammasome Adaptor Protein ASC in Mild Cognitive Impairment and Alzheimer’s Disease
by Xavier O. Scott, Marisa E. Stephens, Marie C. Desir, W. Dalton Dietrich, Robert W. Keane and Juan Pablo de Rivero Vaccari
Int. J. Mol. Sci. 2020, 21(13), 4674; https://doi.org/10.3390/ijms21134674 - 30 Jun 2020
Cited by 40 | Viewed by 3944
Abstract
Mild cognitive impairment (MCI) is characterized by memory loss in the absence of dementia and is considered the translational stage between normal aging and early Alzheimer’s disease (AD). Patients with MCI have a greater risk of advancing to AD. Thus, identifying early markers [...] Read more.
Mild cognitive impairment (MCI) is characterized by memory loss in the absence of dementia and is considered the translational stage between normal aging and early Alzheimer’s disease (AD). Patients with MCI have a greater risk of advancing to AD. Thus, identifying early markers of MCI has the potential to increase the therapeutic window to treat and manage the disease. Protein levels of the inflammasome signaling proteins apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and interleukin (IL)-18 were analyzed in the serum of patients with MCI, AD and healthy age-matched donors as possible biomarkers, as well as levels of soluble amyloid precursor proteins α/β (sAPP α/β) and neurofilament light (NfL). Cut-off points and positive and negative predictive values, as well as receiver operator characteristic (ROC) curves, likelihood ratios and accuracy were determined for these proteins. Although the levels of ASC were higher in MCI and AD than in age-matched controls, protein levels of ASC were higher in MCI than in AD cases. For control vs. MCI, the area under the curve (AUC) for ASC was 0.974, with a cut-off point of 264.9 pg/mL. These data were comparable to the AUC for sAPP α and β of 0.9687 and 0.9068, respectively, as well as 0.7734 for NfL. Moreover, similar results were obtained for control vs. AD and MCI vs. AD. These results indicate that ASC is a promising biomarker of MCI and AD. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

9 pages, 954 KiB  
Article
Aβ1-42 and Tau as Potential Biomarkers for Diagnosis and Prognosis of Amyotrophic Lateral Sclerosis
by Débora Lanznaster, Rudolf C. Hergesheimer, Salah Eddine Bakkouche, Stephane Beltran, Patrick Vourc’h, Christian R. Andres, Diane Dufour-Rainfray, Philippe Corcia and Hélène Blasco
Int. J. Mol. Sci. 2020, 21(8), 2911; https://doi.org/10.3390/ijms21082911 - 21 Apr 2020
Cited by 16 | Viewed by 2530
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease, but its definitive diagnosis delays around 12 months. Although the research is highly active in the biomarker field, the absence of specific biomarkers for diagnosis contributes to this long delay. Another strategy [...] Read more.
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease, but its definitive diagnosis delays around 12 months. Although the research is highly active in the biomarker field, the absence of specific biomarkers for diagnosis contributes to this long delay. Another strategy of biomarker identification based on less specific but sensitive molecules may be of interest in clinical practice. For example, markers related to other neurodegenerative diseases such as Alzheimer’s disease (AD) could be fully explored. Here, we compared baseline levels of amyloidβ1-42 (Aβ1-42), total Tau, and phosphorylated-Tau (phospho-Tau) protein in the cerebrospinal fluid (CSF) of ALS patients to controls and correlated it with clinical parameters of ALS progression collected over 12 months. We observed increased levels of Aβ1-42 (controls: 992.9 ± 358.3 ng/L; ALS: 1277.0 ± 296.6 ng/L; p < 0.0001) and increased Aβ1-42/phospho-Tau ratio and Innotest Amyloid Tau Index (IATI) (both p < 0.0001). IATI and the phospho-Tau/total Tau ratio correlated positively with ALSFRS-R and weight at baseline. Multivariate analysis revealed that baseline ALSFRS-R was associated with Aβ1-42 and phospho-Tau/total Tau ratio (p = 0.0109 and p = 0.0013, respectively). Total Tau and phospho-Tau levels correlated negatively with ALSFRS-R variation at months 6 and 9, respectively (p = 0.02 and p = 0.04, respectively). Phospho-Tau/total Tau ratio correlated positively with ALSFRS-R variation at month 9 (p = 0.04). CSF levels of Aβ1-42 could be used as a complementary tool to ALS diagnosis, and total Tau and phospho-Tau levels may help establishing the prognosis of ALS. Further studies merit exploring the pathophysiological mechanisms associated with these markers. Despite their lack of specificity, phospho-Tau/total Tau and Aβ1-42 should be combined to other biological and clinical markers in order to improve ALS management. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

13 pages, 1685 KiB  
Article
Cerebrospinal Fluid Neurofilament Light Chain Is Associated with Kynurenine Pathway Metabolite Changes in Multiple Sclerosis
by Cecilia Rajda, Zsolt Galla, Helga Polyák, Zoltán Maróti, Kristóf Babarczy, Dániel Pukoli and László Vécsei
Int. J. Mol. Sci. 2020, 21(8), 2665; https://doi.org/10.3390/ijms21082665 - 11 Apr 2020
Cited by 25 | Viewed by 3143
Abstract
Neurofilament light (NFL) has proved to be a good prognostic factor in multiple sclerosis (MS), as its level is proportionally elevated with extended neuraxonal damage. The involvement of the kynurenine pathway in neuroinflammation has been proved. The precursor of this pathway is the [...] Read more.
Neurofilament light (NFL) has proved to be a good prognostic factor in multiple sclerosis (MS), as its level is proportionally elevated with extended neuraxonal damage. The involvement of the kynurenine pathway in neuroinflammation has been proved. The precursor of this pathway is the essential amino acid tryptophan, which is catabolized 95% towards kynurenine metabolites. Quinolinic acid (QUIN) within the brain is only produced in activated microglia and macrophages, leading to axonal degeneration via the activation of N-Methyl-D-aspartate receptors. Neopterin is a biomarker for inflammation produced by macrophages. The association of these biomarkers has not previously been investigated. Our aim was to assess whether there is an association of the neurodegenerative biomarker NFL with the markers of neuroinflammation, e.g., kynurenine metabolites and neopterin, in the cerebrospinal fluid (CSF). CSF samples of patients with MS (pwMS; n = 37) and age-matched controls (n = 22) were compared for NFL levels by ELISA, while the kynurenine pathway metabolites tryptophan and neopterin were detected with mass spectrometry. Spearman’s correlation showed that NFL is an independent predictor of neurological disability in the MS group. Significant correlations were found between NFL, neopterin, and QUIN, and between kynurenine and neopterin. Receiver operating characteristic (ROC) curve analysis was used to plot the top three best predictors of MS-related disability that yielded the best specificity and sensitivity. Normalized NFL (AUC: 0.923), QUIN (AUC: 0.803), and neopterin (AUC: 0.843) were the best independent predictors of neurological disability in pwMS. The CSF NFL and CSF QUIN, together with neopterin, were elevated in the CSF of pwMS compared to controls. The combination of the neurodegenerative biomarkers together with biomarkers of neuroinflammation could provide additional information on the underlying pathomechanism of disease activity, which is essential for the identification of patients at risk of developing cumulative disabilities. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

Review

Jump to: Research

22 pages, 367 KiB  
Review
Electroencephalography as a Non-Invasive Biomarker of Alzheimer’s Disease: A Forgotten Candidate to Substitute CSF Molecules?
by Paloma Monllor, Ana Cervera-Ferri, Maria-Angeles Lloret, Daniel Esteve, Begoña Lopez, Jose-Luis Leon and Ana Lloret
Int. J. Mol. Sci. 2021, 22(19), 10889; https://doi.org/10.3390/ijms221910889 - 08 Oct 2021
Cited by 12 | Viewed by 2748
Abstract
Biomarkers for disease diagnosis and prognosis are crucial in clinical practice. They should be objective and quantifiable and respond to specific therapeutic interventions. Optimal biomarkers should reflect the underlying process (pathological or not), be reproducible, widely available, and allow measurements repeatedly over time. [...] Read more.
Biomarkers for disease diagnosis and prognosis are crucial in clinical practice. They should be objective and quantifiable and respond to specific therapeutic interventions. Optimal biomarkers should reflect the underlying process (pathological or not), be reproducible, widely available, and allow measurements repeatedly over time. Ideally, biomarkers should also be non-invasive and cost-effective. This review aims to focus on the usefulness and limitations of electroencephalography (EEG) in the search for Alzheimer’s disease (AD) biomarkers. The main aim of this article is to review the evolution of the most used biomarkers in AD and the need for new peripheral and, ideally, non-invasive biomarkers. The characteristics of the EEG as a possible source for biomarkers will be revised, highlighting its advantages compared to the molecular markers available so far. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
15 pages, 324 KiB  
Review
A Sex Perspective in Neurodegenerative Diseases: microRNAs as Possible Peripheral Biomarkers
by Paola Piscopo, Maria Bellenghi, Valeria Manzini, Alessio Crestini, Giada Pontecorvi, Massimo Corbo, Elena Ortona, Alessandra Carè and Annamaria Confaloni
Int. J. Mol. Sci. 2021, 22(9), 4423; https://doi.org/10.3390/ijms22094423 - 23 Apr 2021
Cited by 29 | Viewed by 3111
Abstract
Sex is a significant variable in the prevalence and incidence of neurological disorders. Sex differences exist in neurodegenerative disorders (NDs), where sex dimorphisms play important roles in the development and progression of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. In the last [...] Read more.
Sex is a significant variable in the prevalence and incidence of neurological disorders. Sex differences exist in neurodegenerative disorders (NDs), where sex dimorphisms play important roles in the development and progression of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. In the last few years, some sex specific biomarkers for the identification of NDs have been described and recent studies have suggested that microRNA (miRNA) could be included among these, as influenced by the hormonal and genetic background. Failing to consider the possible differences between males and females in miRNA evaluation could introduce a sex bias in studies by not considering some of these sex-related biomarkers. In this review, we recapitulate what is known about the sex-specific differences in peripheral miRNA levels in neurodegenerative diseases. Several studies have reported sex-linked disparities, and from the literature analysis miR-206 particularly has been shown to have a sex-specific involvement. Hopefully, in the near future, patient stratification will provide important additional clues in diagnosis, prognosis, and tailoring of the best therapeutic approaches for each patient. Sex-specific biomarkers, such as miRNAs, could represent a useful tool for characterizing subgroups of patients. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
33 pages, 1135 KiB  
Review
Targeting for Success: Demonstrating Proof-of-Concept with Mechanistic Early Phase Clinical Pharmacology Studies for Disease-Modification in Neurodegenerative Disorders
by Maurits F. J. M. Vissers, Jules A. A. C. Heuberger and Geert Jan Groeneveld
Int. J. Mol. Sci. 2021, 22(4), 1615; https://doi.org/10.3390/ijms22041615 - 05 Feb 2021
Cited by 6 | Viewed by 3855
Abstract
The clinical failure rate for disease-modifying treatments (DMTs) that slow or stop disease progression has been nearly 100% for the major neurodegenerative disorders (NDDs), with many compounds failing in expensive and time-consuming phase 2 and 3 trials for lack of efficacy. Here, we [...] Read more.
The clinical failure rate for disease-modifying treatments (DMTs) that slow or stop disease progression has been nearly 100% for the major neurodegenerative disorders (NDDs), with many compounds failing in expensive and time-consuming phase 2 and 3 trials for lack of efficacy. Here, we critically review the use of pharmacological and mechanistic biomarkers in early phase clinical trials of DMTs in NDDs, and propose a roadmap for providing early proof-of-concept to increase R&D productivity in this field of high unmet medical need. A literature search was performed on published early phase clinical trials aimed at the evaluation of NDD DMT compounds using MESH terms in PubMed. Publications were selected that reported an early phase clinical trial with NDD DMT compounds between 2010 and November 2020. Attention was given to the reported use of pharmacodynamic (mechanistic and physiological response) biomarkers. A total of 121 early phase clinical trials were identified, of which 89 trials (74%) incorporated one or multiple pharmacodynamic biomarkers. However, only 65 trials (54%) used mechanistic (target occupancy or activation) biomarkers to demonstrate target engagement in humans. The most important categories of early phase mechanistic and response biomarkers are discussed and a roadmap for incorporation of a robust biomarker strategy for early phase NDD DMT clinical trials is proposed. As our understanding of NDDs is improving, there is a rise in potentially disease-modifying treatments being brought to the clinic. Further increasing the rational use of mechanistic biomarkers in early phase trials for these (targeted) therapies can increase R&D productivity with a quick win/fast fail approach in an area that has seen a nearly 100% failure rate to date. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

21 pages, 687 KiB  
Review
What, When and How to Measure—Peripheral Biomarkers in Therapy of Huntington’s Disease
by Lukasz Przybyl, Magdalena Wozna-Wysocka, Emilia Kozlowska and Agnieszka Fiszer
Int. J. Mol. Sci. 2021, 22(4), 1561; https://doi.org/10.3390/ijms22041561 - 04 Feb 2021
Cited by 20 | Viewed by 4813
Abstract
Among the main challenges in further advancing therapeutic strategies for Huntington’s disease (HD) is the development of biomarkers which must be applied to assess the efficiency of the treatment. HD is a dreadful neurodegenerative disorder which has its source of pathogenesis in the [...] Read more.
Among the main challenges in further advancing therapeutic strategies for Huntington’s disease (HD) is the development of biomarkers which must be applied to assess the efficiency of the treatment. HD is a dreadful neurodegenerative disorder which has its source of pathogenesis in the central nervous system (CNS) but is reflected by symptoms in the periphery. Visible symptoms include motor deficits and slight changes in peripheral tissues, which can be used as hallmarks for prognosis of the course of HD, e.g., the onset of the disease symptoms. Knowing how the pathology develops in the context of whole organisms is crucial for the development of therapy which would be the most beneficial for patients, as well as for proposing appropriate biomarkers to monitor disease progression and/or efficiency of treatment. We focus here on molecular peripheral biomarkers which could be used as a measurable outcome of potential therapy. We present and discuss a list of wet biomarkers which have been proposed in recent years to measure pre- and postsymptomatic HD. Interestingly, investigation of peripheral biomarkers in HD can unravel new aspects of the disease pathogenesis. This especially refers to inflammatory proteins or specific immune cells which attract scientific attention in neurodegenerative disorders. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

42 pages, 1919 KiB  
Review
Competing Endogenous RNA Networks as Biomarkers in Neurodegenerative Diseases
by Leticia Moreno-García, Tresa López-Royo, Ana Cristina Calvo, Janne Markus Toivonen, Miriam de la Torre, Laura Moreno-Martínez, Nora Molina, Paula Aparicio, Pilar Zaragoza, Raquel Manzano and Rosario Osta
Int. J. Mol. Sci. 2020, 21(24), 9582; https://doi.org/10.3390/ijms21249582 - 16 Dec 2020
Cited by 67 | Viewed by 6887
Abstract
Protein aggregation is classically considered the main cause of neuronal death in neurodegenerative diseases (NDDs). However, increasing evidence suggests that alteration of RNA metabolism is a key factor in the etiopathogenesis of these complex disorders. Non-coding RNAs are the major contributor to the [...] Read more.
Protein aggregation is classically considered the main cause of neuronal death in neurodegenerative diseases (NDDs). However, increasing evidence suggests that alteration of RNA metabolism is a key factor in the etiopathogenesis of these complex disorders. Non-coding RNAs are the major contributor to the human transcriptome and are particularly abundant in the central nervous system, where they have been proposed to be involved in the onset and development of NDDs. Interestingly, some ncRNAs (such as lncRNAs, circRNAs and pseudogenes) share a common functionality in their ability to regulate gene expression by modulating miRNAs in a phenomenon known as the competing endogenous RNA mechanism. Moreover, ncRNAs are found in body fluids where their presence and concentration could serve as potential non-invasive biomarkers of NDDs. In this review, we summarize the ceRNA networks described in Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis and spinocerebellar ataxia type 7, and discuss their potential as biomarkers of these NDDs. Although numerous studies have been carried out, further research is needed to validate these complex interactions between RNAs and the alterations in RNA editing that could provide specific ceRNET profiles for neurodegenerative disorders, paving the way to a better understanding of these diseases. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Graphical abstract

24 pages, 1415 KiB  
Review
Searching for Peripheral Biomarkers in Neurodegenerative Diseases: The Tryptophan-Kynurenine Metabolic Pathway
by Nóra Török, Masaru Tanaka and László Vécsei
Int. J. Mol. Sci. 2020, 21(24), 9338; https://doi.org/10.3390/ijms21249338 - 08 Dec 2020
Cited by 82 | Viewed by 8275
Abstract
Neurodegenerative diseases are multifactorial, initiated by a series of the causative complex which develops into a certain clinical picture. The pathogenesis and disease course vary from patient to patient. Thus, it should be likewise to the treatment. Peripheral biomarkers are to play a [...] Read more.
Neurodegenerative diseases are multifactorial, initiated by a series of the causative complex which develops into a certain clinical picture. The pathogenesis and disease course vary from patient to patient. Thus, it should be likewise to the treatment. Peripheral biomarkers are to play a central role for tailoring a personalized therapeutic plan for patients who suffered from neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis, among others. Nevertheless, the use of biomarkers in clinical practice is still underappreciated and data presented in biomarker research for clinical use is still uncompelling, compared to the abundant data available for drug research and development. So is the case with kynurenines (KYNs) and the kynurenine pathway (KP) enzymes, which have been associated with a wide range of diseases including cancer, autoimmune diseases, inflammatory diseases, neurologic diseases, and psychiatric disorders. This review article discusses current knowledge of KP alterations observed in the central nervous system as well as the periphery, its involvement in pathogenesis and disease progression, and emerging evidence of roles of microbiota in the gut-brain axis, searching for practical peripheral biomarkers which ensure personalized treatment plans for neurodegenerative diseases. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

19 pages, 1298 KiB  
Review
Peripheral Glycolysis in Neurodegenerative Diseases
by Simon M. Bell, Toby Burgess, James Lee, Daniel J. Blackburn, Scott P. Allen and Heather Mortiboys
Int. J. Mol. Sci. 2020, 21(23), 8924; https://doi.org/10.3390/ijms21238924 - 24 Nov 2020
Cited by 35 | Viewed by 5943
Abstract
Neurodegenerative diseases are a group of nervous system conditions characterised pathologically by the abnormal deposition of protein throughout the brain and spinal cord. One common pathophysiological change seen in all neurodegenerative disease is a change to the metabolic function of nervous system and [...] Read more.
Neurodegenerative diseases are a group of nervous system conditions characterised pathologically by the abnormal deposition of protein throughout the brain and spinal cord. One common pathophysiological change seen in all neurodegenerative disease is a change to the metabolic function of nervous system and peripheral cells. Glycolysis is the conversion of glucose to pyruvate or lactate which results in the generation of ATP and has been shown to be abnormal in peripheral cells in Alzheimer’s disease, Parkinson’s disease, and Amyotrophic Lateral Sclerosis. Changes to the glycolytic pathway are seen early in neurodegenerative disease and highlight how in multiple neurodegenerative conditions pathology is not always confined to the nervous system. In this paper, we review the abnormalities described in glycolysis in the three most common neurodegenerative diseases. We show that in all three diseases glycolytic changes are seen in fibroblasts, and red blood cells, and that liver, kidney, muscle and white blood cells have abnormal glycolysis in certain diseases. We highlight there is potential for peripheral glycolysis to be developed into multiple types of disease biomarker, but large-scale bio sampling and deciphering how glycolysis is inherently altered in neurodegenerative disease in multiple patients’ needs to be accomplished first to meet this aim. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Graphical abstract

21 pages, 2168 KiB  
Review
Alpha-Synuclein in the Gastrointestinal Tract as a Potential Biomarker for Early Detection of Parkinson’s Disease
by Dominika Fricova, Jana Harsanyiova and Alzbeta Kralova Trancikova
Int. J. Mol. Sci. 2020, 21(22), 8666; https://doi.org/10.3390/ijms21228666 - 17 Nov 2020
Cited by 12 | Viewed by 5867
Abstract
The primary pathogenesis associated with Parkinson’s disease (PD) occurs in peripheral tissues several years before the onset of typical motor symptoms. Early and reliable diagnosis of PD could provide new treatment options for PD patients and improve their quality of life. At present, [...] Read more.
The primary pathogenesis associated with Parkinson’s disease (PD) occurs in peripheral tissues several years before the onset of typical motor symptoms. Early and reliable diagnosis of PD could provide new treatment options for PD patients and improve their quality of life. At present, however, diagnosis relies mainly on clinical symptoms, and definitive diagnosis is still based on postmortem pathological confirmation of dopaminergic neuronal degeneration. In addition, the similarity of the clinical, cognitive, and neuropathological features of PD with other neurodegenerative diseases calls for new biomarkers, suitable for differential diagnosis. Alpha-synuclein (α-Syn) is a potential PD biomarker, due to its close connection with the pathogenesis of the disease. Here we summarize the currently available information on the possible use of α-Syn as a biomarker of early stages of PD in gastrointestinal (GI) tissues, highlight its potential to distinguish PD and other neurodegenerative diseases, and suggest alternative methods (primarily developed for other tissue analysis) that could improve α-Syn detection procedures or diagnostic methods in general. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

27 pages, 2009 KiB  
Review
Utility of Animal Models to Understand Human Alzheimer’s Disease, Using the Mastermind Research Approach to Avoid Unnecessary Further Sacrifices of Animals
by Tian Qin, Samantha Prins, Geert Jan Groeneveld, Gerard Van Westen, Helga E. de Vries, Yin Cheong Wong, Luc J.M. Bischoff and Elizabeth C.M. de Lange
Int. J. Mol. Sci. 2020, 21(9), 3158; https://doi.org/10.3390/ijms21093158 - 30 Apr 2020
Cited by 14 | Viewed by 5773
Abstract
To diagnose and treat early-stage (preclinical) Alzheimer’s disease (AD) patients, we need body-fluid-based biomarkers that reflect the processes that occur in this stage, but current knowledge on associated processes is lacking. As human studies on (possible) onset and early-stage AD would be extremely [...] Read more.
To diagnose and treat early-stage (preclinical) Alzheimer’s disease (AD) patients, we need body-fluid-based biomarkers that reflect the processes that occur in this stage, but current knowledge on associated processes is lacking. As human studies on (possible) onset and early-stage AD would be extremely expensive and time-consuming, we investigate the potential value of animal AD models to help to fill this knowledge gap. We provide a comprehensive overview of processes associated with AD pathogenesis and biomarkers, current knowledge on AD-related biomarkers derived from on human and animal brains and body fluids, comparisons of biomarkers obtained in human AD and frequently used animal AD models, and emerging body-fluid-based biomarkers. In human studies, amyloid beta (Aβ), hyperphosphorylated tau (P-tau), total tau (T-tau), neurogranin, SNAP-25, glial fibrillary acidic protein (GFAP), YKL-40, and especially neurofilament light (NfL) are frequently measured. In animal studies, the emphasis has been mostly on Aβ. Although a direct comparison between human (familial and sporadic) AD and (mostly genetic) animal AD models cannot be made, still, in brain, cerebrospinal fluid (CSF), and blood, a majority of similar trends are observed for human AD stage and animal AD model life stage. This indicates the potential value of animal AD models in understanding of the onset and early stage of AD. Moreover, animal studies can be smartly designed to provide mechanistic information on the interrelationships between the different AD processes in a longitudinal fashion and may also include the combinations of different conditions that may reflect comorbidities in human AD, according to the Mastermind Research approach. Full article
(This article belongs to the Special Issue Peripheral Biomarkers in Neurodegenerative Diseases 2.0)
Show Figures

Figure 1

Back to TopTop