ijms-logo

Journal Browser

Journal Browser

Toxicity Mechanism of Emerging Pollutants

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Toxicology".

Deadline for manuscript submissions: 31 May 2024 | Viewed by 801

Special Issue Editors


E-Mail Website
Guest Editor
Laboratory of Bioelectrochemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, 15-245 Bialystok, Poland
Interests: lipid membranes; liposomes; emerging pollutant; toxicology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Laboratory of Bioelectrochemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, 15-245 Bialystok, Poland
Interests: lipid membranes; liposomes; new pollutants; toxicology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The group of emerging pollutant compounds includes environmental contaminants such as pharmaceuticals, disinfectants, personal care products, endocrine disruptors, pesticides, microplastics, and many others. Their impact on human health is often associated with cyto- and genotoxicity, and the effects of their action include diseases such as diabetes, obesity, cancer, circulatory system diseases, and fertility disorders. These substances are detected in the environment in very low concentrations, but they still cause harmful effects on aquatic, soil, and human organisms. That is why it is so important to investigate the mechanisms of their action and discover ways to counteract their toxic properties. The aim of this Special Issue is to collect information on the occurrence, identification, and mechanisms of action of compounds from the emerging pollutants group. This collection of articles will include the most up-to-date articles on the mechanisms of action of environmental contaminants and methods of counteracting the toxicity of various xenobiotics, using the most modern methodologies. Therefore, this Special Issue is open to comprehensive review and original articles and covers the following topics:

  • Emerging pollutants occurrence and identification;
  • Emerging pollutants mechanisms of action;
  • Cytotoxicity and genotoxicity;
  • Molecular mechanisms of xenobiotics activity;
  • Pesticides, microplastic, and cancer;
  • Alleviation of contaminants toxicity.

Dr. Monika Naumowicz
Dr. Joanna Kotyńska
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • emerging pollutant
  • toxicology
  • cancer
  • EDC
  • pesticides
  • microplastic
  • human cell lines
  • environment
  • molecular mechanisms

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 2406 KiB  
Article
Extracellular Vesicles in Environmental Toxicological Studies: Association between Urinary Concentrations of Phthalate Metabolites and Exosomal miRNA Expression Profiles
by Paolo Cocci, Danilo Bondi, Carmen Santangelo, Tiziana Pietrangelo, Vittore Verratti, Angelo Cichelli, Giovanni Caprioli, Franks Kamgang Nzekoue, Manuella Lesly Kouamo Nguefang, Gianni Sagratini, Gilberto Mosconi and Francesco Alessandro Palermo
Int. J. Mol. Sci. 2024, 25(9), 4876; https://doi.org/10.3390/ijms25094876 - 30 Apr 2024
Viewed by 175
Abstract
Phthalates are chemical compounds, mainly used as additives in plastics, which are known to induce harmful impacts to the environment and human health due to their ability to act as hormone-mimics. Few studies have been reported on the relationship between human exposure to [...] Read more.
Phthalates are chemical compounds, mainly used as additives in plastics, which are known to induce harmful impacts to the environment and human health due to their ability to act as hormone-mimics. Few studies have been reported on the relationship between human exposure to phthalates and the level of circulating microRNAs (miRs), especially those miRs encapsulated in extracellular vesicles/exosomes or exosome-like vesicles (ELVs). We examined the relationship of ELV-miR expression patterns and urine of adult men with five phthalate metabolites (i.e., mono isobutyl phthalate, mono-n-butyl phthalate, mono benzyl phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, mono-(2-ethylhexyl) phthalate) to identify potential biomarkers and relevant pathways. We found significant positive associations which were further confirmed by multivariable analysis. Overall, our analyses showed that the Σ phthalate metabolite concentration was associated with a significant increase in the expression level of two miRs found in ELV: miR-202 and miR-543. Different pathways including cancer and immune-related responses were predicted to be involved in this relationship. Analyzing the specific downstream target genes of miR-202 and miR-543, we identified the phosphatase and tensin homolog (PTEN) as the key gene in several converging pathways. In summary, the obtained results demonstrate that exposure to environmental phthalates could be related to altered expression profiles of specific ELV-miRs in adult men, thereby demonstrating the potential of miRs carried by exosomes to act as early effect biomarkers. Full article
(This article belongs to the Special Issue Toxicity Mechanism of Emerging Pollutants)
Show Figures

Figure 1

14 pages, 8512 KiB  
Communication
Nanoplastics Penetrate Human Bronchial Smooth Muscle and Small Airway Epithelial Cells and Affect Mitochondrial Metabolism
by Ewa Winiarska, Monika Chaszczewska-Markowska, Daniel Ghete, Marek Jutel and Magdalena Zemelka-Wiacek
Int. J. Mol. Sci. 2024, 25(9), 4724; https://doi.org/10.3390/ijms25094724 - 26 Apr 2024
Viewed by 308
Abstract
Micro- and nanoplastic particles, including common forms like polyethylene and polystyrene, have been identified as relevant pollutants, potentially causing health problems in living organisms. The mechanisms at the cellular level largely remain to be elucidated. This study aims to visualize nanoplastics in bronchial [...] Read more.
Micro- and nanoplastic particles, including common forms like polyethylene and polystyrene, have been identified as relevant pollutants, potentially causing health problems in living organisms. The mechanisms at the cellular level largely remain to be elucidated. This study aims to visualize nanoplastics in bronchial smooth muscle (BSMC) and small airway epithelial cells (SAEC), and to assess the impact on mitochondrial metabolism. Healthy and asthmatic human BSMC and SAEC in vitro cultures were stimulated with polystyrene nanoplastics (PS-NPs) of 25 or 50 nm size, for 1 or 24 h. Live cell, label-free imaging by holotomography microscopy and mitochondrial respiration and glycolysis assessment were performed. Furthermore, 25 and 50 nm NPs were shown to penetrate SAEC, along with healthy and diseased BSMC, and they impaired bioenergetics and induce mitochondrial dysfunction compared to cells not treated with NPs, including changes in oxygen consumption rate and extracellular acidification rate. NPs pose a serious threat to human health by penetrating airway tissues and cells, and affecting both oxidative and glycolytic metabolism. Full article
(This article belongs to the Special Issue Toxicity Mechanism of Emerging Pollutants)
Show Figures

Graphical abstract

Back to TopTop