ijms-logo

Journal Browser

Journal Browser

The Multiple Mechanisms Underlying Neuropathic Pain (III)

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Neurobiology".

Deadline for manuscript submissions: 20 May 2024 | Viewed by 2883

Special Issue Editors


E-Mail Website
Guest Editor
European Centre for Brain Research, IRCCS - Santa Lucia Foundation (FSL), National Research Council (C.N.R.) Institute for Complex System (ISC), Via del Fosso di Fiorano 64, 00143 Roma, Italy
Interests: nutrition; obesity; energy metabolism; brain reward processing; gut-brain axis; neuropathic pain; neurodegenerative diseases; neuroinflammation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
National Research Council (C.N.R.) Institute of Biochemistry and Cell Biology (IBBC), Campus Internazionale "Adriano Buzzati-Traverso", Via E. Ramarini, 32, 00015 Monterotondo Scalo, Roma, Italy
Interests: neuropathy; pain; autophagy; myelin; glia; disease-related biomarkers; immune cells; inflammation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Pain is a highly subjective, barely communicable, conscious experience—a form of private knowledge including sensorial, cognitive, and affective evaluation and processing. The switch from acute to chronic pain is characterized by the passage between noxious stimuli and pain as a defense of the body’s integrity and persistent pain as a clinical syndrome. Indeed, neuropathic pain (NeP) comprises different clinical signs and symptoms and many sites (e.g., from peripheral sensory fibers to cortical brain areas) of possible injuries. Multiple causes, such as polyneuropathy and small-fiber neuropathy of different origin, and multiple mechanisms are established features in NeP.

There is increasing awareness that the dysregulation of multiple molecular, metabolic, and biochemical pathways can significantly contribute to chronic neuroinflammation and to the development of NeP. In parallel, there is also growing attention toward the different clinical impact produced by neuropathies on male and female subjects in both medical settings and in rodent models. As a matter of fact, pain does not affect male and female individuals in the same manner, and sex differences in pain responses are well-recognized clinical facts. Although several factors (e.g., genetic, hormonal, physiological, and neuronal) and signaling pathways (e.g., Toll-like receptors, immune cells) have been identified to be involved in pain processing in a sex-dependent fashion, our view is still limited and not adequately advanced to develop effective sex-specific antinociceptive treatments. Gender differences in pain perception and relief dramatically modify analgesic response, drug efficacy, and the management of chronic pain.

Based on these grounds, in the present Special Issue, we invite original research and reviews in the field of mechanisms underlying NeP, including neuroinflammatory aspects and sexual dimorphism in response to painkillers. The SI will particularly address molecular, biochemical, and metabolic mechanisms and the evidence of pain behaviors that may help to increase our knowledge of NeP pathophysiology and contribute to account for sex-dependent differences in pain experience.

Dr. Roberto Coccurello
Dr. Sara Marinelli
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • neuropathic pain
  • nociception
  • neuroinflammation
  • sex differences
  • sex hormones
  • analgesic response

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 1886 KiB  
Article
Analgesic Effects of Fisetin, Peimine, Astaxanthin, Artemisinin, Bardoxolone Methyl and 740 Y-P and Their Influence on Opioid Analgesia in a Mouse Model of Neuropathic Pain
by Katarzyna Ciapała, Ewelina Rojewska, Katarzyna Pawlik, Agata Ciechanowska and Joanna Mika
Int. J. Mol. Sci. 2023, 24(10), 9000; https://doi.org/10.3390/ijms24109000 - 19 May 2023
Cited by 3 | Viewed by 1827
Abstract
Treatment of neuropathic pain remains a challenge for modern medicine due to the insufficiently understood molecular mechanisms of its development and maintenance. One of the most important cascades that modulate the nociceptive response is the family of mitogen-activated protein (MAP) kinases and phosphatidylinositol-3-kinase [...] Read more.
Treatment of neuropathic pain remains a challenge for modern medicine due to the insufficiently understood molecular mechanisms of its development and maintenance. One of the most important cascades that modulate the nociceptive response is the family of mitogen-activated protein (MAP) kinases and phosphatidylinositol-3-kinase (PI3K), as well as nuclear factor erythroid 2-related factor 2 (Nrf2). The aim of this study was to determine the effect of nonselective modulators of MAP kinases—fisetin (ERK1/2 and NFκB inhibitor, PI3K activator), peimine (MAPK inhibitor), astaxanthin (MAPK inhibitor, Nrf2 activator) and artemisinin (MAPK inhibitor, NFκB activator), as well as bardoxolone methyl (selective activator of Nrf2) and 740 Y-P (selective activator of PI3K)—in mice with peripheral neuropathy and to compare their antinociceptive potency and examine their effect on analgesia induced by opioids. The study was performed using albino Swiss male mice that were exposed to chronic constriction injury of the sciatic nerve (CCI model). Tactile and thermal hypersensitivity was measured using von Frey and cold plate tests, respectively. Single doses of substances were administered intrathecally on day 7 after CCI. Among the tested substances, fisetin, peimine, and astaxanthin effectively diminished tactile and thermal hypersensitivity in mice after CCI, while artemisinin did not exhibit analgesic potency in this model of neuropathic pain. Additionally, both of the activators tested, bardoxolone methyl and 740 Y-P, also showed analgesic effects after intrathecal administration in mice exposed to CCI. In the case of astaxanthin and bardoxolone methyl, an increase in analgesia after combined administration with morphine, buprenorphine, and/or oxycodone was observed. Fisetin and peimine induced a similar effect on tactile hypersensitivity, where analgesia was enhanced after administration of morphine or oxycodone. In the case of 740 Y-P, the effects of combined administration with each opioid were observed only in the case of thermal hypersensitivity. The results of our research clearly indicate that substances that inhibit all three MAPKs provide pain relief and improve opioid effectiveness, especially if they additionally block NF-κB, such as peimine, inhibit NF-κB and activate PI3K, such as fisetin, or activate Nrf2, such as astaxanthin. In light of our research, Nrf2 activation appears to be particularly beneficial. The abovementioned substances bring promising results, and further research on them will broaden our knowledge regarding the mechanisms of neuropathy and perhaps contribute to the development of more effective therapy in the future. Full article
(This article belongs to the Special Issue The Multiple Mechanisms Underlying Neuropathic Pain (III))
Show Figures

Graphical abstract

Review

Jump to: Research

45 pages, 1885 KiB  
Review
CC Chemokine Family Members’ Modulation as a Novel Approach for Treating Central Nervous System and Peripheral Nervous System Injury—A Review of Clinical and Experimental Findings
by Agata Ciechanowska and Joanna Mika
Int. J. Mol. Sci. 2024, 25(7), 3788; https://doi.org/10.3390/ijms25073788 - 28 Mar 2024
Viewed by 545
Abstract
Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and [...] Read more.
Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal–glial–immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications. Full article
(This article belongs to the Special Issue The Multiple Mechanisms Underlying Neuropathic Pain (III))
Show Figures

Scheme 1

Back to TopTop