ijms-logo

Journal Browser

Journal Browser

Plant Physiology and Molecular Nutrition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 5 June 2024 | Viewed by 3172

Special Issue Editor


E-Mail Website
Guest Editor
College of Resources, Sichuan Agricultural University, Chengdu, China
Interests: plant nutritional signaling and responses; redox homeostasis in plant cells; nitrate reductase biochemistry; ethylene signaling; circadian clock; photosynthetic and respiratory adaptations to nutritional stresses
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

To cope with nutritional deficiency or overload, plants develop both cellular and molecular responses. The mechanisms behind these adaptations are not totally understood, but some hormones (especially auxin, ethylene, gibberellins, abscisic acid, etc.) and signaling substances (microRNAs, NO, free radicals, NADPH, etc.) have been implicated. To confer specificity to each nutrient deficiency, hormones and signaling substances should interact among them in a specific way, or they could act through multiple signaling pathways.

Outlining the genetic regulatory mechanisms for nutrient uptake, accumulation, and distribution in plants will make it possible to develop ideal future plants harboring higher usage efficiency of nutrient elements for adapting to changeable environments. It would be helpful to excavate the germplasms and candidate functional genes and provide new insights into understanding the mechanisms of plant nutritional physiology.

Papers submitted to this Special Issue must report novel results, new regulation working models, and the latest findings related to the regulation of the nutrient signaling responses, mainly focused on new gene (or QTL) identification, new nutrient signaling pathways, the interactions among hormones or gene regulation networks to confer specificity to the nutritional responses, and the crosstalk between environmental stress and nutritional responses.

Additional topics of interest for this Special Issue include, but are not limited to, the following:

  1. Nutrient signaling pathways and regulatory mechanisms
  2. Interaction between hormones and nutrition
  3. Molecular mechanisms of nutrient absorption and transport
  4. Effects of nutrient deficiency and excess on plant physiology and biochemistry
  5. Plant adaptation mechanisms to environmental stress
  6. Genetic improvement of plant utilization of nutrients

Prof. Dr. Shu Yuan
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant nutritional physiology
  • nutrient signaling
  • phytohormones
  • gene regulation network
  • environment and nutrition crosstalk

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 6745 KiB  
Article
Cytological, Phytohormone, and Transcriptome Analyses Provide Insights into Persimmon Fruit Shape Formation (Diospyros kaki Thunb.)
by Huawei Li, Yujing Suo, Hui Li, Peng Sun, Weijuan Han and Jianmin Fu
Int. J. Mol. Sci. 2024, 25(9), 4812; https://doi.org/10.3390/ijms25094812 (registering DOI) - 28 Apr 2024
Viewed by 89
Abstract
Fruit shape is an important external feature when consumers choose their preferred fruit varieties. Studying persimmon (Diospyros kaki Thunb.) fruit shape is beneficial to increasing its commodity value. However, research on persimmon fruit shape is still in the initial stage. In this [...] Read more.
Fruit shape is an important external feature when consumers choose their preferred fruit varieties. Studying persimmon (Diospyros kaki Thunb.) fruit shape is beneficial to increasing its commodity value. However, research on persimmon fruit shape is still in the initial stage. In this study, the mechanism of fruit shape formation was studied by cytological observations, phytohormone assays, and transcriptome analysis using the long fruit and flat fruit produced by ‘Yaoxianwuhua’ hermaphroditic flowers. The results showed that stage 2–3 (June 11–June 25) was the critical period for persimmon fruit shape formation. Persimmon fruit shape is determined by cell number in the transverse direction and cell length in the longitudinal direction. High IAA, GA4, ZT, and BR levels may promote long fruit formation by promoting cell elongation in the longitudinal direction, and high GA3 and ABA levels may be more conducive to flat fruit formation by increasing the cell number in the transverse direction and inhibiting cell elongation in the longitudinal direction, respectively. Thirty-two DEGs related to phytohormone biosynthesis and signaling pathways and nine DEGs related to cell division and cell expansion may be involved in the persimmon fruit shape formation process. These results provide valuable information for regulatory mechanism research on persimmon fruit formation. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition)
Show Figures

Figure 1

17 pages, 6070 KiB  
Article
Genome-Wide Identification and Expression Analysis of Kiwifruit Leucine-Rich Repeat Receptor-Like Proteins Reveal Their Roles in Biotic and Abiotic Stress Responses
by Yingying Cao, Congxiao Zhang, Fang Liu, Dawei Li, Aidi Zhang, Li Li and Xiujun Zhang
Int. J. Mol. Sci. 2024, 25(8), 4497; https://doi.org/10.3390/ijms25084497 - 19 Apr 2024
Viewed by 282
Abstract
Leucine-rich repeat receptor-like proteins (LRR-RLPs), a major group of receptor-like proteins in plants, have diverse functions in plant physiology, including growth, development, signal transduction, and stress responses. Despite their importance, the specific roles of kiwifruit LRR-RLPs in response to biotic and [...] Read more.
Leucine-rich repeat receptor-like proteins (LRR-RLPs), a major group of receptor-like proteins in plants, have diverse functions in plant physiology, including growth, development, signal transduction, and stress responses. Despite their importance, the specific roles of kiwifruit LRR-RLPs in response to biotic and abiotic stresses remain poorly understood. In this study, we performed family identification, characterization, transcriptome data analysis, and differential gene expression analysis of kiwifruit LRR-RLPs. We identified totals of 101, 164, and 105 LRR-RLPs in Actinidia chinensis ‘Hongyang’, Actinidia eriantha ‘Huate’, and Actinidia chinensis ‘Red5’, respectively. Synteny analysis revealed that the expansion of kiwifruit LRR-RLPs was primarily attributed to segmental duplication events. Based on RNA-seq data from pathogen-infected kiwifruits, we identified specific LRR-RLP genes potentially involved in different stages of pathogen infection. Additionally, we observed the potential involvement of kiwifruit LRR-RLPs in abiotic stress responses, with upstream transcription factors possibly regulating their expression. Furthermore, protein interaction network analysis unveiled the participation of kiwifruit LRR-RLP in the regulatory network of abiotic stress responses. These findings highlight the crucial roles of LRR-RLPs in mediating both biotic and abiotic stress responses in kiwifruit, offering valuable insights for the breeding of stress-resistant kiwifruit varieties. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition)
Show Figures

Figure 1

16 pages, 11538 KiB  
Article
Molecular Mechanism of Different Rooting Capacity between Two Clones of Taxodium hybrid ‘Zhongshanshan’
by Jiaqi Liu, Lei Xuan, Chaoguang Yu, Jianfeng Hua, Ziyang Wang, Yunlong Yin and Zhiquan Wang
Int. J. Mol. Sci. 2024, 25(4), 2427; https://doi.org/10.3390/ijms25042427 - 19 Feb 2024
Viewed by 479
Abstract
The conifer Taxodium hybrid ‘Zhongshanshan’ (T. hybrid ‘Zhongshanshan’) is characterized by rapid growth, strong stress resistance, and high ornamental value and has significant potential for use in afforestation, landscaping, and wood production. The main method of propagating T. hybrid ‘Zhongshanshan’ is tender branch cutting, but [...] Read more.
The conifer Taxodium hybrid ‘Zhongshanshan’ (T. hybrid ‘Zhongshanshan’) is characterized by rapid growth, strong stress resistance, and high ornamental value and has significant potential for use in afforestation, landscaping, and wood production. The main method of propagating T. hybrid ‘Zhongshanshan’ is tender branch cutting, but the cutting rooting abilities of different T. hybrid ‘Zhongshanshan’ clones differ significantly. To explore the causes of rooting ability differences at a molecular level, we analyzed the transcriptome data of cutting base and root tissues of T. hybrid ‘Zhongshanshan 149’ with a rooting rate of less than 5% and T. hybrid ‘Zhongshanshan 118’ with rooting rate greater than 60%, at the developmental time points in this study. The results indicated that differentially expressed genes between the two clones were mainly associated with copper ion binding, peroxidase, and oxidoreductase activity, response to oxidative stress, phenylpropanoid and flavonoid biosynthesis, and plant hormone signal transduction, among others. The expression pattern of ThAP2 was different throughout the development of the adventitive roots of the two clone cuttings. Therefore, this gene was selected for further study. It was shown that ThAP2 was a nuclear-localized transcription factor and demonstrated a positive feedback effect on rooting in transgenic Nicotiana benthamiana cuttings. Thus, the results of this study explain the molecular mechanism of cutting rooting and provide candidate gene resources for developing genetic breeding strategies for optimizing superior clones of T. hybrid ‘Zhongshanshan’. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition)
Show Figures

Figure 1

19 pages, 7820 KiB  
Article
SlERF109-like and SlNAC1 Coordinately Regulated Tomato Ripening by Inhibiting ACO1 Transcription
by Chen Sun, Gaifang Yao, Jinghan Zhao, Ruying Chen, Kangdi Hu, Guanghua He and Hua Zhang
Int. J. Mol. Sci. 2024, 25(3), 1873; https://doi.org/10.3390/ijms25031873 - 03 Feb 2024
Viewed by 835
Abstract
As a typical climacteric fruit, tomato (Solanum lycopersicum) is widely used for studying the ripening process. The negative regulation of tomato fruits by transcription factor SlNAC1 has been reported, but its regulatory network was unclear. In the present study, we screened [...] Read more.
As a typical climacteric fruit, tomato (Solanum lycopersicum) is widely used for studying the ripening process. The negative regulation of tomato fruits by transcription factor SlNAC1 has been reported, but its regulatory network was unclear. In the present study, we screened a transcription factor, SlERF109-like, and found it had a stronger relationship with SlNAC1 at the early stage of tomato fruit development through the use of transcriptome data, RT-qPCR, and correlation analysis. We inferred that SlERF109-like could interact with SlNAC1 to become a regulatory complex that co-regulates the tomato fruit ripening process. Results of transient silencing (VIGS) and transient overexpression showed that SlERF109-like and SlNAC1 could regulate chlorophyll degradation-related genes (NYC1, PAO, PPH, SGR1), carotenoids accumulation-related genes (PSY1, PDS, ZDS), ETH-related genes (ACO1, E4, E8), and cell wall metabolism-related genes expression levels (CEL2, EXP, PG, TBG4, XTH5) to inhibit tomato fruit ripening. A dual-luciferase reporter and yeast one-hybrid (Y1H) showed that SlNAC1 could bind to the SlACO1 promoter, but SlERF109-like could not. Furthermore, SlERF109-like could interact with SlNAC1 to increase the transcription for ACO1 by a yeast two-hybrid (Y2H) assay, a luciferase complementation assay, and a dual-luciferase reporter. A correlation analysis showed that SlERF109-like and SlNAC1 were positively correlated with chlorophyll contents, and negatively correlated with carotenoid content and ripening-related genes. Thus, we provide a model in which SlERF109-like could interact with SlNAC1 to become a regulatory complex that negatively regulates the tomato ripening process by inhibiting SlACO1 expression. Our study provided a new regulatory network of tomato fruit ripening and effectively reduced the waste of resources. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition)
Show Figures

Figure 1

13 pages, 4584 KiB  
Article
The Impact of Various Organic Phosphorus Carriers on the Uptake and Use Efficiency in Barley
by Yuanfeng Huo, Jingyue Wang, Yinggang Xu, Deyi Hu, Kexian Zhang, Bingjie Chen, Yueyi Wu, Jiaxin Liu, Tianlang Yan, Yang Li, Chaorui Yan, Xuesong Gao, Shu Yuan and Guangdeng Chen
Int. J. Mol. Sci. 2023, 24(24), 17191; https://doi.org/10.3390/ijms242417191 - 06 Dec 2023
Viewed by 764
Abstract
Organic phosphorus (OP) is an essential component of the soil P cycle, which contributes to barley nutrition after its mineralization into inorganic phosphorus (Pi). However, the dynamics of OP utilization in the barley rhizosphere remain unclear. In this study, phytin was screened out [...] Read more.
Organic phosphorus (OP) is an essential component of the soil P cycle, which contributes to barley nutrition after its mineralization into inorganic phosphorus (Pi). However, the dynamics of OP utilization in the barley rhizosphere remain unclear. In this study, phytin was screened out from six OP carriers, which could reflect the difference in OP utilization between a P-inefficient genotype Baudin and a P-efficient genotype CN4027. The phosphorus utilization efficiency (PUE), root morphological traits, and expression of genes associated with P utilization were assessed under P deficiency or phytin treatments. P deficiency resulted in a greater root surface area and thicker roots. In barley fed with phytin as a P carrier, the APase activities of CN4027 were 2–3-fold lower than those of Baudin, while the phytase activities of CN4027 were 2–3-fold higher than those of Baudin. The PUE in CN4027 was mainly enhanced by activating phytase to improve the root absorption and utilization of Pi resulting from OP mineralization, while the PUE in Baudin was mainly enhanced by activating APase to improve the shoot reuse capacity. A phosphate transporter gene HvPHT1;8 regulated P transport from the roots to the shoots, while a purple acid phosphatase (PAP) family gene HvPAPhy_b contributed to the reuse of P in barley. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition)
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Planned Paper I: Global profile the expression of SAURs in response to nitrate in Arabidopsis - Dr. Kong

Planned Paper II: Long-term cold stress induced metbolic changes of tillering nodes could contribute to the resistance of winter wheat when confronting with salinity - Professor. Dr. Yu  

Back to TopTop