Feature Papers in Microbial Genetics in 2023

A special issue of Genes (ISSN 2073-4425). This special issue belongs to the section "Microbial Genetics and Genomics".

Deadline for manuscript submissions: closed (25 November 2023) | Viewed by 12425

Special Issue Editor

Special Issue Information

Dear Colleagues,

This Special Issue, “Feature Papers in Microbial Genetics in 2023”, aims to collect high-quality research articles, review articles, and communications on all aspects of microbial genetics, at the level of individual microorganisms and microbial communities, from different environments/hosts, including ancient ones. We welcome the submission of manuscripts from editorial board members and outstanding scholars invited by the editorial board and editorial office. We aim to represent our Section as an attractive open-access publishing platform for microbial genetics research.

Dr. Silvia Turroni
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Genes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 3800 KiB  
Article
Structural and Functional Shifts in the Microbial Community of a Heavy Metal-Contaminated Soil Exposed to Short-Term Changes in Air Temperature, Soil Moisture and UV Radiation
by Isabel Silva, Marta Alves, Catarina Malheiro, Ana Rita R. Silva, Susana Loureiro, Isabel Henriques and M. Nazaret González-Alcaraz
Genes 2024, 15(1), 107; https://doi.org/10.3390/genes15010107 - 16 Jan 2024
Viewed by 1138
Abstract
The interplay between metal contamination and climate change may exacerbate the negative impact on the soil microbiome and, consequently, on soil health and ecosystem services. We assessed the response of the microbial community of a heavy metal-contaminated soil when exposed to short-term (48 [...] Read more.
The interplay between metal contamination and climate change may exacerbate the negative impact on the soil microbiome and, consequently, on soil health and ecosystem services. We assessed the response of the microbial community of a heavy metal-contaminated soil when exposed to short-term (48 h) variations in air temperature, soil humidity or ultraviolet (UV) radiation in the absence and presence of Enchytraeus crypticus (soil invertebrate). Each of the climate scenarios simulated significantly altered at least one of the microbial parameters measured. Irrespective of the presence or absence of invertebrates, the effects were particularly marked upon exposure to increased air temperature and alterations in soil moisture levels (drought and flood scenarios). The observed effects can be partly explained by significant alterations in soil properties such as pH, dissolved organic carbon, and water-extractable heavy metals, which were observed for all scenarios in comparison to standard conditions. The occurrence of invertebrates mitigated some of the impacts observed on the soil microbial community, particularly in bacterial abundance, richness, diversity, and metabolic activity. Our findings emphasize the importance of considering the interplay between climate change, anthropogenic pressures, and soil biotic components to assess the impact of climate change on terrestrial ecosystems and to develop and implement effective management strategies. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Genetics in 2023)
Show Figures

Figure 1

14 pages, 1974 KiB  
Article
Transcriptome Analysis of Streptococcus mutans Quorum Sensing-Mediated Persisters Reveals an Enrichment in Genes Related to Stress Defense Mechanisms
by Delphine Dufour, Haowen Li, Siew-Ging Gong and Céline M. Lévesque
Genes 2023, 14(10), 1887; https://doi.org/10.3390/genes14101887 - 28 Sep 2023
Viewed by 1225
Abstract
Persisters are a small fraction of growth-arrested phenotypic variants that can survive lethal concentrations of antibiotics but are able to resume growth once antibiotics are stopped. Their formation can be a stochastic process or one triggered by environmental cues. In the human pathogen [...] Read more.
Persisters are a small fraction of growth-arrested phenotypic variants that can survive lethal concentrations of antibiotics but are able to resume growth once antibiotics are stopped. Their formation can be a stochastic process or one triggered by environmental cues. In the human pathogen Streptococcus mutans, the canonical peptide-based quorum-sensing system is an inducible DNA repair system that is pivotal for bacterial survival. Previous work has shown that the CSP-signaling peptide is a stress-signaling alarmone that promotes the formation of stress-induced persisters. In this study, we exposed S. mutans to the CSP pheromone to mimic DNA damage conditions and isolated the antibiotic persisters by treating the cultures with ofloxacin. A transcriptome analysis was then performed to evaluate the differential gene expression between the normal stationary-phase cells and the persisters. RNA sequencing revealed that triggered persistence was associated with the upregulation of genes related to several stress defense mechanisms, notably, multidrug efflux pumps, the arginine deaminase pathway, and the Opu/Opc system. In addition, we showed that inactivation of the VicK kinase of the YycFG essential two-component regulatory system abolished the formation of triggered persisters via the CSP pheromone. These data contribute to the understanding of the triggered persistence phenotype and may suggest new therapeutic strategies for treating persistent streptococcal infections. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Genetics in 2023)
Show Figures

Figure 1

11 pages, 9044 KiB  
Article
Involvement of Nucleotide Excision Repair and Rec-Dependent Pathway Genes for UV Radiation Resistance in Deinococcus irradiatisoli 17bor-2
by Gayathri Subramani and Sathiyaraj Srinivasan
Genes 2023, 14(9), 1803; https://doi.org/10.3390/genes14091803 - 15 Sep 2023
Viewed by 793
Abstract
Strain Deinococcus irradiatisoli 17bor-2 was isolated from a soil sample exposed to γ radiation at Seoul Women’s University, Republic of Korea. The genus Deinococcus is a Gram-negative, coccus-shaped, and extremophilic bacterium, well renowned as being a radiation-resistant bacterium. Therefore, the mechanism behind the [...] Read more.
Strain Deinococcus irradiatisoli 17bor-2 was isolated from a soil sample exposed to γ radiation at Seoul Women’s University, Republic of Korea. The genus Deinococcus is a Gram-negative, coccus-shaped, and extremophilic bacterium, well renowned as being a radiation-resistant bacterium. Therefore, the mechanism behind the resistance to radiation and the gene responsible for the resistance could be helpful for detailed experimental studies with biotechnological applications. To study the involvement of genes in UV radiation resistance in strain 17bor-2, the genomic DNA of the strain was sequenced and constructed using the Pacific Biosciences RS II system. In addition, the complete genome sequence of strain 17bor-2 was annotated and interpreted using the Genomes–Expert Review (IMG-ER) system, along with Prodigal and JGI GenePRIMP analysis. The genome analysis of strain 17bor-2 revealed evidence of excinuclease UvrABC genes, which are key enzymes in the nucleotide excision repair (NER) mechanism, as well as genes from the recA-dependent and recQ pathways. The genome of strain Deinococcus irradiatisoli 17bor-2 was a circular chromosome comprising 3,052,043 bp with a GC content of 67.0%, including 2911 coding sequences (CDs), 49 tRNA genes, and 9 rRNA genes. In addition, their complete genome sequence annotation features provided evidence that radiation resistance genes play a central part in adaptation against extreme environmental conditions. In recent decades, excision repair genes have been indicated in considerable detail for both prokaryote and eukaryote resistance against UV-C radiation. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Genetics in 2023)
Show Figures

Figure 1

18 pages, 4638 KiB  
Article
HmbC, a Protein of the HMG Family, Participates in the Regulation of Carotenoid Biosynthesis in Fusarium fujikuroi
by Marta Franco-Losilla, Steffen Nordzieke, Ingo Feldmann, M. Carmen Limón and Javier Avalos
Genes 2023, 14(8), 1661; https://doi.org/10.3390/genes14081661 - 21 Aug 2023
Viewed by 1077
Abstract
In the fungus Fusarium fujikuroi, carotenoid production is up-regulated by light and down-regulated by the CarS RING finger protein, which modulates the mRNA levels of carotenoid pathway genes (car genes). To identify new potential regulators of car genes, we used a [...] Read more.
In the fungus Fusarium fujikuroi, carotenoid production is up-regulated by light and down-regulated by the CarS RING finger protein, which modulates the mRNA levels of carotenoid pathway genes (car genes). To identify new potential regulators of car genes, we used a biotin-mediated pull-down procedure to detect proteins capable of binding to their promoters. We focused our attention on one of the proteins found in the screening, belonging to the High-Mobility Group (HMG) family that was named HmbC. The deletion of the hmbC gene resulted in increased carotenoid production due to higher mRNA levels of car biosynthetic genes. In addition, the deletion resulted in reduced carS mRNA levels, which could also explain the partial deregulation of the carotenoid pathway. The mutants exhibited other phenotypic traits, such as alterations in development under certain stress conditions, or reduced sensitivity to cell wall degrading enzymes, revealed by less efficient protoplast formation, indicating that HmbC is also involved in other cellular processes. In conclusion, we identified a protein of the HMG family that participates in the regulation of carotenoid biosynthesis. This is probably achieved through an epigenetic mechanism related to chromatin structure, as is frequent in this class of proteins. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Genetics in 2023)
Show Figures

Graphical abstract

47 pages, 853 KiB  
Article
Genomic Distribution of ushA-like Genes in Bacteria: Comparison to cpdB-like Genes
by João Meireles Ribeiro and José Carlos Cameselle
Genes 2023, 14(8), 1657; https://doi.org/10.3390/genes14081657 - 20 Aug 2023
Viewed by 831
Abstract
UshA and CpdB are nucleotidases of the periplasm of several Gram-negative bacteria, while several Gram-positives contain cell wall-bound variants. UshA is a 5′-nucleotidase, a UDP-sugar hydrolase, and a CDP-alcohol hydrolase. CpdB acts as a 3′-nucleotidase and as a phosphodiesterase of 2′,3′-cyclic nucleotides and [...] Read more.
UshA and CpdB are nucleotidases of the periplasm of several Gram-negative bacteria, while several Gram-positives contain cell wall-bound variants. UshA is a 5′-nucleotidase, a UDP-sugar hydrolase, and a CDP-alcohol hydrolase. CpdB acts as a 3′-nucleotidase and as a phosphodiesterase of 2′,3′-cyclic nucleotides and 3′,5′-linear and cyclic dinucleotides. Both proteins are pro-virulent for the pathogens producing them and facilitate escape from the innate immunity of the infected host. Recently, the genomic distribution of cpdB-like genes in Bacteria was found to be non-homogeneous among different taxa, and differences occur within single taxa, even at species level. Similitudes and differences between UshA-like and CpdB-like proteins prompted parallel analysis of their genomic distributions in Bacteria. The presence of ushA-like and cpdB-like genes was tested by TBlastN analysis using seven protein probes to query the NCBI Complete Genomes Database. It is concluded that the distribution of ushA-like genes, like that of cpdB-like genes, is non-homogeneous. There is a partial correlation between both gene kinds: in some taxa, both are present or absent, while in others, only one is present. The result is an extensive catalog of the genomic distribution of these genes at different levels, from phylum to species, constituting a starting point for research using other in silico or experimental approaches. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Genetics in 2023)
Show Figures

Graphical abstract

14 pages, 3508 KiB  
Article
Refinement of Leishmania donovani Genome Annotations in the Light of Ribosome-Protected mRNAs Fragments (Ribo-Seq Data)
by Alejandro Sánchez-Salvador, Sandra González-de la Fuente, Begoña Aguado, Phillip A. Yates and Jose M. Requena
Genes 2023, 14(8), 1637; https://doi.org/10.3390/genes14081637 - 17 Aug 2023
Viewed by 982
Abstract
Advances in next-generation sequencing methodologies have facilitated the assembly of an ever-increasing number of genomes. Gene annotations are typically conducted via specialized software, but the most accurate results require additional manual curation that incorporates insights derived from functional and bioinformatic analyses (e.g., transcriptomics, [...] Read more.
Advances in next-generation sequencing methodologies have facilitated the assembly of an ever-increasing number of genomes. Gene annotations are typically conducted via specialized software, but the most accurate results require additional manual curation that incorporates insights derived from functional and bioinformatic analyses (e.g., transcriptomics, proteomics, and phylogenetics). In this study, we improved the annotation of the Leishmania donovani (strain HU3) genome using publicly available data from the deep sequencing of ribosome-protected mRNA fragments (Ribo-Seq). As a result of this analysis, we uncovered 70 previously non-annotated protein-coding genes and improved the annotation of around 600 genes. Additionally, we present evidence for small upstream open reading frames (uORFs) in a significant number of transcripts, indicating their potential role in the translational regulation of gene expression. The bioinformatics pipelines developed for these analyses can be used to improve the genome annotations of other organisms for which Ribo-Seq data are available. The improvements provided by these studies will bring us closer to the ultimate goal of a complete and accurately annotated L. donovani genome and will enhance future transcriptomics, proteomics, and genetics studies. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Genetics in 2023)
Show Figures

Figure 1

20 pages, 3045 KiB  
Article
Complement System Activation Is a Plasma Biomarker Signature during Malaria in Pregnancy
by Veronica Feijoli Santiago, Jamille Gregorio Dombrowski, Rebeca Kawahara, Livia Rosa-Fernandes, Simon Ngao Mule, Oscar Murillo, Thais Viggiani Santana, Joao Victor Paccini Coutinho, Janaina Macedo-da-Silva, Lucas Cardoso Lazari, Erika Paula Machado Peixoto, Marcel Ivan Ramirez, Martin R. Larsen, Cláudio Romero Farias Marinho and Giuseppe Palmisano
Genes 2023, 14(8), 1624; https://doi.org/10.3390/genes14081624 - 14 Aug 2023
Viewed by 1327
Abstract
Malaria in pregnancy (MiP) is a public health problem in malaria-endemic areas, contributing to detrimental outcomes for both mother and fetus. Primigravida and second-time mothers are most affected by severe anemia complications and babies with low birth weight compared to multigravida women. Infected [...] Read more.
Malaria in pregnancy (MiP) is a public health problem in malaria-endemic areas, contributing to detrimental outcomes for both mother and fetus. Primigravida and second-time mothers are most affected by severe anemia complications and babies with low birth weight compared to multigravida women. Infected erythrocytes (IE) reach the placenta, activating the immune response by placental monocyte infiltration and inflammation. However, specific markers of MiP result in poor outcomes, such as low birth weight, and intrauterine growth restriction for babies and maternal anemia in women infected with Plasmodium falciparum are limited. In this study, we identified the plasma proteome signature of a mouse model infected with Plasmodium berghei ANKA and pregnant women infected with Plasmodium falciparum infection using quantitative mass spectrometry-based proteomics. A total of 279 and 249 proteins were quantified in murine and human plasma samples, of which 28% and 30% were regulated proteins, respectively. Most of the regulated proteins in both organisms are involved in complement system activation during malaria in pregnancy. CBA anaphylatoxin assay confirmed the complement system activation by the increase in C3a and C4a anaphylatoxins in the infected plasma compared to non-infected plasma. Moreover, correlation analysis showed the association between complement system activation and reduced head circumference in newborns from Pf-infected mothers. The data obtained in this study highlight the correlation between the complement system and immune and newborn outcomes resulting from malaria in pregnancy. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Genetics in 2023)
Show Figures

Graphical abstract

12 pages, 2725 KiB  
Article
The YBR056W-A and Its Ortholog YDR034W-B of S. cerevisiae Belonging to CYSTM Family Participate in Manganese Stress Overcoming
by Anton Zvonarev, Larisa Ledova, Lubov Ryazanova, Airat Valiakhmetov, Vasilina Farofonova and Tatiana Kulakovskaya
Genes 2023, 14(5), 987; https://doi.org/10.3390/genes14050987 - 27 Apr 2023
Cited by 1 | Viewed by 1178
Abstract
The CYSTM (cysteine-rich transmembrane module) protein family comprises small molecular cysteine-rich tail-anchored membrane proteins found in many eukaryotes. The Saccharomyces cerevisiae strains carrying the CYSTM genes YDRO34W-B and YBR056W-A (MNC1) fused with GFP were used to test the expression of these [...] Read more.
The CYSTM (cysteine-rich transmembrane module) protein family comprises small molecular cysteine-rich tail-anchored membrane proteins found in many eukaryotes. The Saccharomyces cerevisiae strains carrying the CYSTM genes YDRO34W-B and YBR056W-A (MNC1) fused with GFP were used to test the expression of these genes under different stresses. The YBR056W-A (MNC1) and YDR034W-B genes are expressed under stress conditions caused by the toxic concentrations of heavy metal ions, such as manganese, cobalt, nickel, zinc, cuprum, and 2.4-dinitrophenol uncoupler. The expression level of YDR034W-B was higher than that of YBR056W-A under alkali and cadmium stresses. The Ydr034w-b-GFP and Ybr056w-a-GFP proteins differ in the cellular localization: Ydr034w-b-GFP was mainly observed in the plasma membrane and vacuolar membrane, while Ybr056w-a-GFP was observed in the cytoplasm, probably in intracellular membranes. The null-mutants in both genes demonstrated decreased cell concentration and lytic phenotype when cultivated in the presence of excess manganese. This allows for speculations about the involvement of Mnc1 and Ydr034w-b proteins in manganese stress overcoming. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Genetics in 2023)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 2923 KiB  
Review
Pharmacomicrobiomics in Anticancer Therapies: Why the Gut Microbiota Should Be Pointed Out
by Gabriele Conti, Federica D’Amico, Marco Fabbrini, Patrizia Brigidi, Monica Barone and Silvia Turroni
Genes 2023, 14(1), 55; https://doi.org/10.3390/genes14010055 - 24 Dec 2022
Cited by 6 | Viewed by 2821
Abstract
Anticancer treatments have shown a variable therapeutic outcome that may be partly attributable to the activity of the gut microbiota on the pathology and/or therapies. In recent years, microbiota–drug interactions have been extensively investigated, but most of the underlying molecular mechanisms still remain [...] Read more.
Anticancer treatments have shown a variable therapeutic outcome that may be partly attributable to the activity of the gut microbiota on the pathology and/or therapies. In recent years, microbiota–drug interactions have been extensively investigated, but most of the underlying molecular mechanisms still remain unclear. In this review, we discuss the relationship between the gut microbiota and some of the most commonly used drugs in oncological diseases. Different strategies for manipulating the gut microbiota layout (i.e., prebiotics, probiotics, antibiotics, and fecal microbiota transplantation) are then explored in order to optimize clinical outcomes in cancer patients. Anticancer technologies that exploit tumor-associated bacteria to target tumors and biotransform drugs are also briefly discussed. In the field of pharmacomicrobiomics, multi-omics strategies coupled with machine and deep learning are urgently needed to bring to light the interaction among gut microbiota, drugs, and host for the development of truly personalized precision therapies. Full article
(This article belongs to the Special Issue Feature Papers in Microbial Genetics in 2023)
Show Figures

Figure 1

Back to TopTop