Next Article in Journal
Neuroinflammatory Pathways in the ALS-FTD Continuum: A Focus on Genetic Variants
Next Article in Special Issue
HmbC, a Protein of the HMG Family, Participates in the Regulation of Carotenoid Biosynthesis in Fusarium fujikuroi
Previous Article in Journal
Diverse Clinical Phenotypes of CASK-Related Disorders and Multiple Functional Domains of CASK Protein
Previous Article in Special Issue
Refinement of Leishmania donovani Genome Annotations in the Light of Ribosome-Protected mRNAs Fragments (Ribo-Seq Data)
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Genomic Distribution of ushA-like Genes in Bacteria: Comparison to cpdB-like Genes

by
João Meireles Ribeiro
* and
José Carlos Cameselle
Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina y Ciencias de la Salud, Universidad de Extremadura, 06006 Badajoz, Spain
*
Author to whom correspondence should be addressed.
Genes 2023, 14(8), 1657; https://doi.org/10.3390/genes14081657
Submission received: 17 July 2023 / Revised: 11 August 2023 / Accepted: 15 August 2023 / Published: 20 August 2023
(This article belongs to the Special Issue Feature Papers in Microbial Genetics in 2023)

Abstract

:
UshA and CpdB are nucleotidases of the periplasm of several Gram-negative bacteria, while several Gram-positives contain cell wall-bound variants. UshA is a 5′-nucleotidase, a UDP-sugar hydrolase, and a CDP-alcohol hydrolase. CpdB acts as a 3′-nucleotidase and as a phosphodiesterase of 2′,3′-cyclic nucleotides and 3′,5′-linear and cyclic dinucleotides. Both proteins are pro-virulent for the pathogens producing them and facilitate escape from the innate immunity of the infected host. Recently, the genomic distribution of cpdB-like genes in Bacteria was found to be non-homogeneous among different taxa, and differences occur within single taxa, even at species level. Similitudes and differences between UshA-like and CpdB-like proteins prompted parallel analysis of their genomic distributions in Bacteria. The presence of ushA-like and cpdB-like genes was tested by TBlastN analysis using seven protein probes to query the NCBI Complete Genomes Database. It is concluded that the distribution of ushA-like genes, like that of cpdB-like genes, is non-homogeneous. There is a partial correlation between both gene kinds: in some taxa, both are present or absent, while in others, only one is present. The result is an extensive catalog of the genomic distribution of these genes at different levels, from phylum to species, constituting a starting point for research using other in silico or experimental approaches.

Graphical Abstract

1. Introduction

The proteins UshA and CpdB are prototypic nucleotidases of the periplasmic space of Escherichia coli [1,2] and other Gram-negative bacteria [3,4,5,6,7,8,9,10]. As far as enzyme activity is concerned, UshA is a highly efficient 5′-nucleotidase that is also active as a phosphoanhydride hydrolase of UDP-sugars, CDP-alcohols, and other nucleotidic derivatives [11,12,13]. CpdB is a highly efficient 3′-nucleotidase, also active as a phosphodiesterase of 2′,3′-cyclic mononucleotides, 3′,5′-cyclic or linear dinucleotides, and the artificial phosphodiester substrate bis-4-nitrophenylphosphate [14,15]. Both proteins are structurally related, as following the removable signal peptide for secretion (SP), they display the same two-domain architecture: an N-terminal metallophos domain (Pfam ID PF00149) that includes the catalytic site with a dimetal center, and a C-terminal 5_nucleotid_C domain (Pfam ID PF02872) that includes a substrate-binding site [16,17]. It is noteworthy that the designation of the 5_nucleotid_C domain does not imply the occurrence of 5′-nucleotidase activity. UshA is a 5′-nucleotidase devoid of 3′-nucleotidase activity, while CpdB is a 3′-nucleotidase devoid of 5′-nucleotidase activity. In both proteins, the N- and C-terminal domains are joined by a ≈20-amino acid linker [17,18]. Both enzymes are believed to share a remarkable catalytic cycle in which the typical 5′-AMP or 3′-AMP substrates bind to the specificity site in the 5_nucleotid_C domain, with the adenine ring forming a stacking sandwich between two aromatic residues. The substrate-charged domains then undergo large, 96° rotations that bring the substrate to the catalytic site in the metallophos domains, where dephosphorylation takes place [17,19,20].
Besides the periplasmic versions of UshA and CpdB, UshA-like and CpdB-like proteins occur in Gram-positive bacteria as cell wall-bound proteins that have received different names. Among them are ecto-5′-nucleotidases of Staphylococcus aureus (AdsA [21]), Streptococcus sanguinis (Nt5e [22]), S. agalactiae (NudP [23]), S. pyogenes (S5nA [24]), and S. suis (Ssads [25]), and ecto-3′-nucleotidases of S. agalactiae (CdnP [26]) and S. suis (SntA [27,28]). These proteins, in addition to the SP, metallophos, and 5_nucleotid_C domains typical of UshA and CpdB, bear 3′ extensions that constitute cell wall binding domains with a LPXTG or similar motif [29].
The periplasmic or cell wall locations of these enzymes make them able to act on non-cytoplasmic substrates, either secreted from the same cell or of exogenous origin, for instance, in the cytoplasm of eukaryotic cells invaded by bacterial pathogens such as Salmonella enterica or S. agalactiae. Both 5′-nucleotidases and 3′-nucleotidases have been identified and considered virulence factors for producing pathogens by mechanisms related to their nucleotide-degrading activities or to effects on complement that facilitate evasion from host innate immunity [21,22,23,24,25,26,27,30,31].
For these reasons, we consider it of utmost interest to gain knowledge of how widespread, among the genomes of different bacterial taxa, the occurrence of genes coding for nucleotidases is, which, either by being periplasmic or bound to the cell wall, have the potential to act extracytoplasmatically on nucleotidic substrates. In a recent study, we analyzed the genomic distribution of cpdB-like genes using the protein sequence of S. enterica CpdB as a probe (query) for TBlastN analyses of complete genomes, limited by bacterial taxa at different levels, from phyla to species [32]. The results revealed that cpdB-like genes are far from ubiquitous in the superkingdom Bacteria, being present in some phyla but not in others. At levels higher than species, the genomic distribution was not homogeneous since few taxa contained a cpdB-like gene in all the sequenced genomes. At the level of species, the distribution was more homogeneous, as out of 77 taxa considered, 38 showed a (near) widespread distribution of cpdB-like genes and 28 did not contain them. Interestingly, 11 species showed a partial distribution, with some sequenced genomes but not all containing a cpdB-like gene. This interesting panoramic view prompted us to extend the analysis to ushA-like genes and to perform it in a more detailed way by increasing the number of TBlastN probes from the single one used in the previous study [32] to a total of seven different probes in the current manuscript, five for usha-like genes and two for cpdB-like ones. The result is an extensive catalog of the genomic distribution of these genes at different levels, from phylum to species, constituting a starting point for research using other in silico or experimental approaches. Major observations were that the genomic distribution of ushA-like genes was not homogeneous and that the correlation with cpdB-like genes was partial, as in some taxa both were present or absent; however, in others only one was present. Other interesting outcomes worth further research by other approaches are pointed out.

2. Materials and Methods

TBlastN analyses [33,34] were run against NCBI complete microbial genomes (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=TBlastN&PAGE_TYPE=BlastSearch&BLAST_SPEC=MicrobialGenomes&LINK_LOC=blasttab&LAST_PAGE=blastn, accessed on 15 July 2023). Default parameters were applied except that the maximum number of target sequences was adapted to the expected number of hits. The database was queried using the sequence identifiers of the seven-probe set selected (Figure 1). Routinely, the Entrez query “NOT plasmid [Title]” was applied. The searches within each taxonomical group (taxid) (Organism) were restricted in principle to genomes of type material [35]. This restriction was removed when less than five type-material genomes were available or, as a rule, for searches within genera and species. The typical conditions for launching a TBlastN search from the Microbial Translated Blast page are shown in Figure S1. When running searches limited by organism, a bug was observed in the organism menu as it occasionally chose the wrong taxid number. Therefore, all taxid numbers were checked in the NCBI Taxonomy browser (https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi, acceessed on 15 July 2023) [36]. Genomic hits were computed when the alignment score was >150 and query coverage was >70%.

3. Results

3.1. Selection of Probes for TBlastN Analysis

The probes for TBlastN analysis of UshA-like genes were selected among a set of 21 bacterial 5′-nucleotidases (Table 1). Eighteen of them were collected from a recent review by Zakataeva [37], to which two well-characterized CpdB-like 3′-nucleotidases were added [14,27] (no. 20 and 21 in Table 1). All of them are either periplasmic or cell wall-bound, experimentally studied nucleotidases. In addition, one uncharacterized, putative 5′-nucleotidase of B. subtilis, recovered from UniProtKB/Swiss-Prot (https://www.uniprot.org/help/uniprotkb, acceessed on 15 July 2023) [38], was included (no. 19 in Table 1).
Table 1. Periplasmic or cell wall-bound bacterial nucleotidases are used to select probes for TBlastN analysis of bacterial genomes. This protein set was taken from Zakataeva [37], except no. 19 (taken from UniProtKB/Swiss-Prot [38]) and no. 20 and 21 from [14,27].
Table 1. Periplasmic or cell wall-bound bacterial nucleotidases are used to select probes for TBlastN analysis of bacterial genomes. This protein set was taken from Zakataeva [37], except no. 19 (taken from UniProtKB/Swiss-Prot [38]) and no. 20 and 21 from [14,27].
No.AccessionDescriptionAmino Acids
1 1P07024USHA_ECOLI [Escherichia coli]550
2Q9KQ305′-nucleotidase [Vibrio cholerae]553
3WP_005182369UDP-sugar hydrolase/5′-nucleotidase UshA [Yersinia intermedia]550
4Q8EFH15′-nucleotidase [Shewanella oneidensis]569
5AAF12718UDP-sugar hydrolase precursor [Klebsiella aerogenes]550
6P44569NAD 5′-nucleotidase [Haemophilus influenzae]603
7WP_061821283LPXTG-anchored adenosine synthase AdsA [Staphylococcus aureus] 772
8WP_011837008Cell surface ecto-5′-nucleotidase Nt5e [Streptococcus sanguinis] 719
9WP_000726911Bifunctional metallophosphatase/5′-nucleotidase [Streptococcus agalactiae]690
10AEJ25391Surface-anchored 5′-nucleotidase [Streptococcus equi]668
11Q9A0A2Putative secreted 5′-nucleotidase (5′-nucleotidase) [Streptococcus pyogenes]670
12CAR45827Putative 5′-nucleotidase [Streptococcus suis P1/7]721
13WP_0030998505′-Nucleotidase C-terminal domain-containing protein [Streptococcus iniae]676
14Q6HTQ72′,3′-Cyclic-nucleotide 2′-phosphodiesterase [Bacillus anthracis]780
15P228485′-Nucleotidase (Vibrio parahaemolyticus)560
16WP_102505627UDP-sugar hydrolase/5′-nucleotidase UshA [Salinivibrio costicola)557
17WP_041419915UDP-sugar hydrolase/5′-nucleotidase UshA [Shewanella violacea]569
18WP_011760134UDP-sugar hydrolase/5′-nucleotidase UshA [Shewanella amazonensis]571
19O32133Uncharacterized metallophosphoesterase YunD [Bacillus subtilis]462
20P083312′,3′-Cyclic-nucleotide 2′-phosphodiesterase/3′-nucleotidase [Escherichia coli]647
21AYV64543Heme-binding protein SntA [Streptococcus suis]813
1 The probes selected for the study are shown in the background color as Figure 1 to facilitate cross-referencing.
The mutual relatedness among Table 1 proteins was evaluated by the scores of BlastP alignments (Figure 1). This allowed us to select seven proteins to be used as TBlastN probes; they are identified as proteins 1, 6, 8, 9, 19, 20, and 21 in Table 1 and Figure 1. According to the color code used in Figure 1, five of the selected probes (no. 1, 8, 9, 20, and 21) were highly related to a small group of nucleotidases, whereas the other two probes (no. 6 and 19) showed insignificant alignment scores with any other member of the set. Incidentally, one of the so-called 5′-nucleotidases (no. 14 in Table 1) was actually a CpdB-like protein, to judge from its strong relatedness to authentic CpdB-like enzymes (no. 20 and 21 in Table 1) and insignificant alignment scores to the other Table 1 proteins.

3.2. TBlastN Analysis of Bacterial Genomes

3.2.1. General Strategy for the Analysis and Presentation of Results

TBlastN searches were run between 30 June and 15 July 2023 as described under the Materials and Methods section. The number of hits obtained with each probe for each taxonomical group analyzed was recorded. A global TBlastN search was run on 30 June 2023, in the superkingdom Bacteria (taxid:2), with 4185 type-material genomes and a total of 40,608 genomes available on that date. Table 2 shows the results obtained with the seven probes, computing only hits found among type-material genomes.
Thereafter, searches were run in the Bacteria taxa of the NCBI Taxonomy browser [36] at different levels. Detailed results are shown in Tables S1–S6. Summaries of the results at different levels are shown in Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8, where the presence or absence of ushA-like and cpdB-like genes is schematically indicated. In these summaries, “presence” does not mean that the genes are widespread in the taxon. In this concern, three levels are distinguished: ≤50%, >50% but <100%, and 100% of the analyzed genomes contain ushA-like and/or cpdB-like genes (hits). This is marked by the letters U (ushA-like) and C (cpdB-like) on different color backgrounds: green (≤50%), orange (>50% but <100%), and red (100%). It must be remarked that these percentages include hits obtained with any of the UshA-like or CpdB-like probes (see Table 2). For ushA-like genes, the results were strongly dependent on the probe (five different ones are used), whereas for cpdB-like genes, the two probes used gave similar results in most but not all the taxonomical groups. Finally, when “presence” of both types of genes is indicated for the same taxon, it does not necessarily mean they are in the same genome, unless 100% of the genomes gave positive results in both cases. Of course, 100% positivity for one gene type and <100% for the other means that some genomes contain both types of genes. On the other hand, logically, “absence” refers to 100% of the analyzed genomes with any probe.
In summary, when a taxonomical level is negative or 100% positive for both genes, or negative for one and 100% positive for the other gene type, the analysis of such a taxon is deemed complete and is not pursued further at lower taxonomical levels.

3.2.2. Genomic Distribution of ushA-like and cpdB-like Genes in Bacteria Phyla

Forty three phyla, including the Delta/epsilon subdivision, found in the NCBI Taxonomy browser within the superkingdom Bacteria (mostly coincident with [39]), were submitted to TBlastN analyses with UshA-like and CpdB-like probes (Table 2). The detailed results are shown in Table S1. A simpler summary of the presence/absence of ushA-like and cpdB-like genes is shown in Table 3.
Twelve phyla contained both types of genes; 14 showed neither; 11 showed ushA-like but not cpdB-like genes; and in six cases, the converse was true. With the criteria of Section 3.2.1, 19 phyla (those in black type in Table 3) were considered complete and not pursued at lower levels. The 24 phyla in red type are further analyzed in Table 4 and Table S2.

3.2.3. Genomic Distribution of ushA-like and cpdB-like Genes in Bacterial Classes of Selected Phyla

To continue the TBlastN exploration, 76 bacterial classes belonging to 24 different phyla were queried with the seven probes (Table 2). The detailed results are shown in Table S2. In six of those classes, there was no sequenced genome. A simpler summary of the presence/absence of ushA-like and cpdB-like genes in the 70 classes for which there were sequenced genome(s) is shown in Table 4. With the criteria defined in Section 3.2.1, the analyses of 31 classes (those in black type in Table 4) were considered complete and not pursued further at lower taxonomical levels. On the other hand, the 39 classes shown in red type in Table 4 were further analyzed (Table 5 and Table S3), with one exception marked with an asterisk.

3.2.4. Genomic Distribution of ushA-like and cpdB-like Genes in Bacterial Orders of Selected Classes

To continue the TBlastN exploration, 152 bacterial orders belonging to 38 different classes were queried with the seven probes (Table 2). The detailed results are shown in Table S3. In 20 of those classes, there was no sequenced genome. A simpler summary of the presence/absence of ushA-like and cpdB-like genes in the 132 classes for which there were sequenced genome(s) is shown in Table 5. With the criteria defined in Section 3.2.1, the analyses of 53 orders (those in black type in Table 5) were considered complete and not pursued further at lower taxonomical levels. On the other hand, the 79 orders shown in red type in Table 5 were further analyzed (Table 6 and Table S4).

3.2.5. Genomic Distribution of ushA-like and cpdB-like Genes in Bacterial Families of Selected Orders

To continue the TBlastN exploration, 403 bacterial families belonging to 79 different orders were queried with the seven probes (Table 2). The detailed results are shown in Table S4. In 99 of those families, there was no sequenced genome. A simpler summary of the presence/absence of ushA-like and cpdB-like genes in the 304 families for which there were sequenced genome(s) is shown in Table 6. With the criteria defined in Section 3.2.1, the analyses of 139 families (those in black type in Table 6) were considered complete and not pursued further at lower levels. On the other hand, the 165 families shown in red type in Table 6 were further analyzed (Table 7 and Table S5).

3.2.6. Genomic Distribution of ushA-like and cpdB-like Genes in Bacterial Genera of Selected Families

To continue the TBlastN exploration, 510 bacterial genera belonging to 165 different families were queried with the seven probes (Table 2). In contrast to previous steps (Section 3.2.3, Section 3.2.4 and Section 3.2.5), TBlastN analyses were not run for all the genera belonging to the families deemed not complete (those highlighted in red type in Table 6). Instead, while doing the TBlastN analyses of families, the genera giving the hits were annotated, thus avoiding running later lots of TBlastN searches that would not give any hits.
The detailed results obtained with the 510 selected genera are shown in Table S5. For all of them, the NCBI Complete Genomes Database contained at least one sequenced genome. A simpler summary of the presence/absence of ushA-like and cpdB-like genes in those genera is shown in Table 7.
With the criteria defined in Section 3.2.1, the analyses of 268 genera (those in black type in Table 7) were considered complete. Anyhow, for analyses at the level of species (Table 8 and Table S6), also at variance with previous steps, the selection was not based on the non-complete character of the genera. Instead, the selection was purely subjective and included species belonging to genera not mentioned in Table 7, as explained in Section 3.2.7.

3.2.7. Genomic Distribution of ushA-like and cpdB-like Genes in Selected Bacterial Species

To continue the TBlastN exploration, 107 bacterial species belonging to different families were queried with the seven probes (Table 2). In contrast to the strategy followed at the previous taxonomical levels, when systematic criteria were applied for taxa selection (Section 3.2.3, Section 3.2.4, Section 3.2.5 and Section 3.2.6), a subjective selection of species was made in this case. It included all the bacterial species analyzed in the earlier study of cpdB-like genes, which had been selected mainly for their pathogenicity [32]. In summary, 107 different species were queried with the seven probes. Of them, the 80 shown in black type were declared complete by the criteria described in Section 3.2.1. Non-complete species are highlighted in red. Detailed results are in Table S6, and a summary is in Table 8.

4. Discussion

4.1. Overview

This study is a follow-up of a previous analysis of the genomic distribution of cpdB-like genes in Bacteria, which was performed with S. enterica CpdB (GenBank accession P26265) as the probe [32]. That study was mainly centered on the phyla Pseudomonadota and Bacillota (named then more traditionally as Proteobacteria and Firmicutes, respectively) and their lower divisions. In the current manuscript, the former study has been extended in several aspects, mainly that besides cpdB-like genes, ushA-like genes have been analyzed, and the searches were run without a priori restriction to particular taxa. Moreover, several probes were used, two for cpdB-like genes and five for ushA-like genes (Table 2). The use of several UshA-like probes revealed different types of ushA-like genes, some of them specifically associated with different bacterial taxa. The result is an extensive catalog of the distribution of these genes in superkingdom Bacteria. Several resources are provided, including Supplementary Tables S1–S6 that contain the detailed results of the analyses at different levels: phylum (Table S1), class (Table S2), order (Table S3), family (Table S4), genus (Table S5), and species (Table S6). In the main manuscript, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8 contain summaries of the data at different levels, from phylum to species.
Table 9 summarizes the total numbers of taxa studied, including the counts of probed taxa of different levels, analyzed taxa (once discounted those for which, by the time of submission, upon TBlastN, no sequenced genomes were found in the NCBI Complete Genomes Database), and taxa declared complete according to the criteria explained in Section 3.2.1. For complete taxa, Table 9 also shows the breakdown by kind of results, depending on whether UshA-like and/or CpdB-like probes gave hits or not. To facilitate searching for particular taxa, alphabetical lists are provided of the 1291 taxa probed (Table S7) and of the 125 taxa without sequenced genomes in the NCBI Complete Genomes Database among those that were probed (Table S8).

4.2. About the Possible Correlation between ushA-like and cpdB-like Genes

UshA and CpdB have different specificities. UshA is a 5′-nucleotidase, UDP-sugar hydrolase, and CDP-alcohol hydrolase [11,12], and CpdB acts as a 3′-nucleotidase and as a phosphodiesterase of 2′,3′-cyclic nucleotides and 3′,5′-linear and cyclic dinucleotides [14]. They are periplasmic [1,2] or cell-wall [21,22,23,24,25,26,27] enzymes that act on extracellular substrates, either exogenous or endogenous. In addition, both are provirulent factors for the producing pathogens, facilitating escape from the innate immunity of the host [21,22,23,24,25,26,27]. The similitude between them was the main reason to study and compare their genomic distributions in Bacteria, with the aim of establishing the extent to which the occurrence of one correlates with the occurrence of the other. In this regard, it is worth recalling that, for instance, the action of CpdB-like proteins on linear and cyclic dinucleotides yields 5′-nucleotides as products but cannot continue their degradation to nucleosides [32]. To this end, the metabolic action of CpdB-like enzymes can be continued by UshA-like enzymes. Moreover, pointing to the correlation between both enzymes is the occurrence in some bacteria of natural fusions of UshA and CpdB as the result of two-gene fusion [40,41].
Table 10, Table 11, Table 12 and Table 13 summarize the non-homogeneous distribution of both gene kinds and the (lack of) correlation between them. A qualitative correlation was observed between both gene kinds for some taxa but not for others. In 416 out of 590 taxa (70.5%), they were both either present (31.4%; Table 10) or absent (39.1%; Table 11). However, 174 taxa (29.5%) failed to show such a correlation, as one of the gene types was present but not the other: 21.7% of the taxa bear ushA-like, not cpdB-like genes (Table 12), whereas for 7.8% the converse was true (Table 13).

4.3. Comments on Some Specific Stories

4.3.1. About Phylum Bacillota and Class Bacilli: Specificity of Probe O32133

A phylum worth special attention is Bacillota, as half of the sequenced type-material genomes (366/705) gave hits with probe O32133, which gave no hits in other phyla except four hits found when the limit to type material was removed for the TBlastN. In Bacillota, there were many hits with all the UshA-like and CpdB-like probes (Table S1). In Table 14, Bacillota is compared with the rest of the superkingdom Bacteria.
In Table 15, a similar comparison is made between the class Bacilli and the rest of the phylum Bacillota. In every case, the distribution of hits among the sequenced genomes was partial, i.e., there were genomes with ushA-like and cpdB-like genes and genomes without them. The degree of coincidence cannot be easily ascertained at this level. This must be attempted at lower taxonomical levels.

4.3.2. About the Occurrence of ushA-like and cpdB-like Genes in the Numerous Sequenced Genomes of Escherichia coli, Salmonella enterica, Pasteurella multocida, Klebsiella pneumoniae and Vibrio cholerae

The five species to be discussed in this section have in common that for them there are numerous genomes available in the NCBI Complete Genomes Database and that the TBlastN analyses did not give complete results for any of the two kinds of genes according to the criteria described in Section 3.2.1.
When complete results are obtained at least for one gene kind, e.g., ushA-like genes, the full picture can be inferred: there will be a number of genomes with both kinds present, and the remaining, up to the total number of genomes, will display only the ushA kind, or vice versa. This is the case for several of the species analyzed in Table 8 (with more details in Table S6). For instance, for Staphylococcus saprophyticus, there are 17 genomes available in the database; all of them gave a ushA-like hit, whereas only four gave a cpdB-like one (Table S6, line 92). It can be concluded that four genomes contain both gene kinds, and the remaining 13 contain only an ushA-like one.
In the cases to be discussed below, there were many hits with UshA-like and CpdB-like probes; however, since TBlastN did not give complete results in any case, for some genomes, it was unclear whether both kinds of genes were absent or one was present and the other absent.
The most important part of the structural and functional information of UshA and CpdB nucleotidases and their encoding genes has been obtained in E. coli [1,2,11,12,14,16,17,18,19]. For this species, a large number of genomes are available in the Complete Genomes Database (3565 when this manuscript was submitted). Most of them; however, not all contain both ushA-like and cpdB-like genes. According to data in line 35 of Table S6, there are 20 E. coli genomes that do not contain an ushA-like gene and 10 genomes that do not contain a cpdB-like gene. By downloading the TBlastN results obtained for E. coli with probes P07024 (UshA protein) and P08331 (CpdB protein), it was confirmed that the same 3559 E. coli genomes had been hit in both cases. Based on their alignment scores, it was possible to identify four genomes that contain an ushA-like gene but are devoid of a cpdB-like gene and 14 genomes for which the converse is true (Table 16). These exceptions were found in 10 different E. coli strains. In addition, there may be six non-identified genomes that contain neither ushA-like nor cpdB-like genes. These data confirm that, although E. coli is a major contributor to the occurrence of these genes in Bacteria, their distribution is near but not fully homogeneous, and there is a high but not full correlation between them.
A particular aspect of some E. coli genomes worthy of attention refers to those of the avian pathogenic E. coli (APEC) strains, for which the cpdB gene has been shown to be provirulent [30]. In the complete genome database, there are five APEC genomes, all of them containing ushA and cpdB genes with high scores (Table 17).
In contrast to what was found in E. coli, a similar analysis with S. enterica genomes led to different results. Table S6 (lines 79–80) shows data for two well-known variants of S. enterica subspecies enterica, serovars Typhi and Typhimurium. In the first case, the 125 genomes available for serovar Typhi gave all high-score hits with probes P07024 (UshA protein) and P08331 (CpdB protein). However, the 350 genomes available for serovar Typhimurium gave hits in only 219 cases with both probes. Downloading and inspection of TBlastN results indicated that all these genomes contained both ushA-like and cpdB-like genes, whereas the remaining 131 genomes of Salmonella Typhimurium deposited in the NCBI Complete Genomes Database contain none of them. In this case, no genome was identified containing one of the gene types but not the other. Therefore, the distribution of these genes in Salmonella Typhimurium is clearly not homogeneous; however, there is a good correlation between them.
In the case of P. multocida, 138 genomes were available in the database, of which 135 gave ushA-like hits and 137 gave cpdB-like ones (line 66 of Table S6). By downloading the TBlastN results obtained for this species with probes P07024 (UshA protein) and P08331 (CpdB protein), it was possible to identify one genome that, despite containing a high-score ushA-like gene, was devoid of a cpdB-like gene, and four genomes that, despite showing high-score cpdB-like genes, were devoid of ushA-like ones (or in one case, just a borderline hit) (Table 18). In this case, such as in E. coli, the distributions of both genes are near but not fully homogeneous, and there is a high but not full correlation between them.
K. pneumoniae is another species for which a large number of genomes are available in the Complete Genomes Database (1967, when this manuscript was submitted). Most of them; however, not all, contain both ushA-like and cpdB-like genes. According to data in line 44 of Table S6, five K. pneumoniae genomes do not contain an ushA-like gene, and five do not contain a cpdB-like gene. To find out whether they are the same or not, TBlastN results obtained with probes P07024 (UshA protein) and P08331 (CpdB protein) were downloaded and compared in Excel. This comparison indicated that the 1962 hits found with each probe were the same; therefore, it seems that there are five double-negative K. pneumoniae genomes, i.e., without both ushA-like and cpdB-like genes. So, the distribution of these genes in K. pneumoniae was near but not fully homogeneous, with a full correlation between them.
In the case of V. cholerae, 221 genomes were available in the database, of which 112 gave ushA-like and cpdB-like hits (line 106 of Table S6). By downloading the TBlastN results obtained for this species with probes P07024 (UshA protein) and P08331 (CpdB protein), it was confirmed that the 112 genomes found by the two probes were the same. Therefore, there are no genomes containing only one of the gene types. All the V. cholerae genomes are either double positive or double negative for these genes. Such as in the case of Salmonella Typhimurium (see above), the distribution of the genes is clearly not homogeneous; however, with full correlation between both kinds.

4.3.3. About the Variety of Distributions of ushA-like and cpdB-like Genes in Species of Streptococcus

The genus Streptococcus is interesting because different species showed different typologies concerning the distribution of ushA-like and cpdB-like genes (see Table 8 and details in lines 95–104 of Table S6). This includes: complete double positive (S. sanguinis and S. termophilus, although probes giving complete ushA positives were different); complete double negative (S. mitis and S. pneumoniae); complete positive for ushA and negative for cpdB (S. mutans and S. pyogenes, although the positives were obtained with different probes); complete positive for ushA and partial for cpdB (S. parasuis); partial positive for ushA and complete positive for cpdB (S. agalactiae); near complete but not fully positive for both genes (S. suis); near complete but not fully positive for ushA and partial for cpdB (S. dysgalactiae). Within Streptococcus species, there is both an irregular distribution and an irregular correlation between ushA-like and cpdB-like genes.

4.4. Repercussion of the Results

In the earlier study of the genomic distribution of cpdB-like genes [32], the possible repercussions of the different kinds of distribution found (widespread, partial, negative) were analyzed, taking into account the role of CpdB-like proteins in the virulence of pathogens, a feature that is shown both by CpdB-like and UshA-like proteins [21,22,23,24,25,26,27]. Therefore, the same analysis can be applied to the results of the current manuscript. This is summarized in three conclusions (adapted from [32]).
Species that do not contain ushA-like and/or cpdB-like genes cannot explode the UshA-like or CpdB-like protein-dependent strategies that facilitate innate immunity escape.
Species in which ushA-like and/or cpdB-like genes are widespread constitute a field to explore the possible role of genes in virulence by creating gene mutants and studying the enzyme activity and specificity of the proteins.
In species with a partial distribution of ushA-like and/or cpdB-like genes, their presence or absence could modulate the virulence of pathogen strains or isolates.

4.5. Strength and Limitations of this Study

The major strength of this study is that it constitutes an extensive catalog of the genomic distribution in Bacteria of two genes with related enzymatic function (but different specificities), structure, and role in virulence. Moreover, interesting is that the TBlastN results are analyzed in terms of alignment scores, which are a constant independent of database size.
On the other hand, the following limitations should be considered:
First, the classification of bacterial taxa is eventually subject to alterations, and, in fact, it has been so since the publication of our earlier study [32].
Second, the results obtained for each taxon are not necessarily stable over time. New bacterial genomes are being sequenced and added to the NCBI Complete Genomes Database or, eventually, retired. In some cases, this was observed to occur to a minor extent in the course of data collection. This can affect the results in a significant way for those taxa with few genomes deposited in the database.
Third, to interpret the results of TBlastN searches in terms of the presence of ushA-like and cpdB-like genes, a minimum alignment score of 151 and a minimum query coverage of 71% were established. This reduces the number of false positives but, in turn, can disregard true but distant homologs. This may have occurred, for instance, with the results of probe WP_011837008, as with some frequency it gave significant scores but with coverages somewhat below 71%.
Fourth, TBlastN hits, even with high scores, reveal the presence of the corresponding genes but do not warrant that they are expressed or that the proteins encoded are enzymatically active. In fact, for instance, silent alleles of ushA have been reported in S. enterica and E. coli [42,43,44,45].
Finally, in such a large collection of data, mistakes are expected. Therefore, in the case of special interest in any concrete result, the readers should be wise to check it by running themselves the relevant TBlastN searches.

5. General Summary of Conclusions and Outcomes Worth of Further Investigation

  • An extensive catalog of the distribution of ushA-like and cpdB-like genes in the genomes of bacterial taxa was constructed by TBlastN analyses of genomes, from phylum to species, run between 30 June and 15 July 2023, with seven different probes, five for ushA-like and two for cpdB-like genes. In total, the genomes of 43 phyla, 76 classes, 152 orders, 403 families, 510 genera, and 107 species were analyzed. This encompasses every bacterial taxon, since a taxon (class, order, family, or genus) was omitted from analysis only when the genomic analysis of the immediately higher taxonomical level was deemed complete (100% genomes positive and/or negative for both gene kinds).
  • The genomic distributions of both gene kinds are not homogeneous, as while significant homologs occur in many taxa, in many others they do not. For instance, considering only taxa declared complete, 359 contained one or both ushA-like and cpdB-like genes (Table 10, Table 12, and Table 13), and 231 contained none of them (Table 11).
  • The correlation between both gene kinds is partial, as among complete taxa there were 416 taxa in which both occurred or both were absent (Table 10 and Table 11), while 128 taxa contained only ushA-like genes (Table 12), and 46 taxa contained only cpdB-like genes (Table 13).
  • One of the probes used for ushA-like genes (accession number O32133) revealed the highly frequent occurrence in class Bacilli genomes (358/425) of homologs of an uncharacterized B. subtilis metallophosphoesterase named YUND_BACSU. This protein is widespread in B. subtilis genomes (331/346) and has good homologs in 100% of the genomes of B. anthracis and B. cereus. These uncharacterized proteins are therefore interesting candidates for cloning, expression, and enzyme characterization. Eventually, they could also be tested for effects on virulence.
  • The five complete genomes available for avian pathogenic E. coli (APEC; Table 17) contain high-score hits of ushA (probe accession number P070724) and cpdB genes (probe accession number P08331). The cpdB gene of APEC has been shown previously to be provirulent [30], while the effect of the ushA gene has not been investigated. Our data indicate that this is a possibility worth investigating by creating the ushA mutant and the double ushA and cpdB mutants of APEC.
  • The five complete genomes available for Salmonella Pullorum contain high-score hits for ushA (probe accession number P070724) and cpdB genes (probe accession number P08331) (Table S6, line 78). For this Salmonella serovar, the cpdB gene has been shown previously to be provirulent [31], while the effect of the ushA gene has not been investigated. Our data indicate that this is an interesting possibility to explore by creating the single ushA mutant and the double cpdB and ushA mutants of S. Pullorum.
  • The different species of the genus Streptococcus offer a variety of situations concerning the genomic distribution of ushA-like and cpdB-like genes (see Section 4.3.3). On the other hand, ushA-like genes of S. sanguinis, S. agalactiae, S. pyogenes, and S. suis, and cpdB-like genes of S. agalactiae and S. suis, individually considered, have been shown to be pro-virulent for the producing pathogens. However, the following cases remain to be studied: (i) the combined effect of ushA-like and cpdB-like genes on the virulence of S. agalactiae and S. suis; (ii) the possible effect of cpdB-like genes in the virulence of all the Streptococcus species that contain such genes but so far have not been studied in this concern; (iii) the possible effect of ushA-like genes in the virulence of all the Streptococcus species that contain such genes but so far have not been studied in this concern.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/genes14081657/s1; Figure S1: Example of a launch page for a TBlastN search; Table S1: TBlastN analysis of ushA-like and cpdB-like genes in Bacteria phyla; Table S2: TBlastN analysis of ushA-like and cpdB-like genes in Bacteria classes from selected phyla; Table S3: TBlastN analysis of ushA-like and cpdB-like genes in Bacteria orders from selected classes; Table S4: TBlastN analysis of ushA-like and cpdB-like genes in Bacteria families from selected orders; Table S5: TBlastN analysis of ushA-like and cpdB-like genes in Bacteria genera from selected families; Table S6: TBlastN analysis of ushA-like and cpdB-like genes in selected Bacteria species; Table S7: Alphabetical lists of Bacteria taxa analyzed; Table S8: Alphabetical lists of taxa probed that contain no sequenced genomes in the NCBI Complete Genomes Database.

Author Contributions

Conceptualization, J.M.R. and J.C.C.; Data curation, J.M.R. and J.C.C.; Formal analysis, J.M.R. and J.C.C.; Investigation, J.M.R. and J.C.C.; Validation, J.M.R.; Writing—original draft, J.C.C.; Writing—review and editing, J.M.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. However, we would like to acknowledge recurrent funding to the Grupo de Enzimología from the Consejería de Economía, Ciencia y Agenda Digital, Junta de Extremadura, Spain (grant number GR21100) co-funded by FEDER (European Regional Development Fund). The APC was funded by a waiver benefit granted by MDPI.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data are contained within the article or supplementary material.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Liu, J.; Burns, D.M.; Beacham, I.R. Isolation and sequence analysis of the gene (cpdB) encoding periplasmic 2′,3′-cyclic phosphodiesterase. J. Bacteriol. 1986, 165, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
  2. Burns, D.M.; Beacham, I.R. Nucleotide sequence and transcriptional analysis of the E. coli ushA gene, encoding periplasmic UDP-sugar hydrolase (5′-nucleotidase): Regulation of the ushA gene, and the signal sequence of its encoded protein product. Nucleic Acids Res. 1986, 14, 4325–4342. [Google Scholar] [CrossRef] [PubMed]
  3. Covington, E.D.; Gelbmann, C.B.; Kotloski, N.J.; Gralnick, J.A. An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Mol. Microbiol. 2010, 78, 519–532. [Google Scholar] [CrossRef] [PubMed]
  4. Lee, K.S.; Song, S.B.; Kim, K.E.; Kim, Y.H.; Kim, S.K.; Kho, B.H.; Ko, D.K.; Choi, Y.K.; Lee, Y.K.; Kim, C.K.; et al. Cloning and characterization of the UDP-sugar hydrolase gene (ushA) of Enterobacter aerogenes IFO 12010. Biochem. Biophys. Res. Commun. 2000, 269, 526–531. [Google Scholar] [CrossRef]
  5. Rittmann, D.; Sorger-Herrmann, U.; Wendisch, V.F. Phosphate starvation-inducible gene ushA encodes a 5′ nucleotidase required for growth of Corynebacterium glutamicum on media with nucleotides as the phosphorus source. Appl. Environ. Microbiol. 2005, 71, 4339–4344. [Google Scholar] [CrossRef]
  6. Beacham, I.R.; Wilson, M.S. Studies on the UDP-sugar hydrolases from Escherichia coli and Salmonella typhimurium. Arch. Biochem. Biophys. 1982, 218, 603–608. [Google Scholar] [CrossRef]
  7. Trülzsch, K.; Roggenkamp, A.; Pelludat, C.; Rakin, A.; Jacobi, C.; Heesemann, J. Cloning and characterization of the gene encoding periplasmic 2′,3′-cyclic phosphodiesterase of Yersinia enterocolitica O:8. Microbiology 2001, 147, 203–213. [Google Scholar] [CrossRef]
  8. McDonough, E.; Kamp, H.; Camilli, A. Vibrio cholerae phosphatases required for the utilization of nucleotides and extracellular DNA as phosphate sources. Mol. Microbiol. 2016, 99, 453–469. [Google Scholar] [CrossRef]
  9. Center, M.S.; Behal, F.J. A cyclic phosphodiesterase with 3′-nucleotidase activity from Proteus mirabilis. J. Biol. Chem. 1968, 243, 138–143. [Google Scholar] [CrossRef]
  10. Rodden, J.L.; Scocca, J.J. Purification and properties of cyclic phosphodiesterase: 3′-nucleotidase, a periplasmic enzyme of Haemophilus influenzae. Arch. Biochem. Biophys. 1972, 153, 837–844. [Google Scholar] [CrossRef]
  11. Ruiz, A.; Hurtado, C.; Meireles Ribeiro, J.; Sillero, A.; Günther Sillero, M.A. Hydrolysis of bis(5′-nucleosidyl) polyphosphates by Escherichia coli 5′-nucleotidase. J. Bacteriol. 1989, 171, 6703–6709. [Google Scholar] [CrossRef] [PubMed]
  12. Alves-Pereira, I.; Canales, J.; Cabezas, A.; Cordero, P.M.; Costas, M.J.; Cameselle, J.C. CDP-alcohol hydrolase, a very efficient activity of the 5′-nucleotidase/UDP-sugar hydrolase encoded by the ushA gene of Yersinia intermedia and Escherichia coli. J. Bacteriol. 2008, 190, 6153–6161. [Google Scholar] [CrossRef] [PubMed]
  13. Neu, H.C. The 5′-nucleotidase of Escherichia coli. I. Purification and properties. J. Biol. Chem. 1967, 242, 3896–3904. [Google Scholar] [CrossRef] [PubMed]
  14. López-Villamizar, I.; Cabezas, A.; Pinto, R.M.; Canales, J.; Ribeiro, J.M.; Cameselle, J.C.; Costas, M.J. The characterization of Escherichia coli CpdB as a recombinant protein reveals that, besides having the expected 3′-nucleotidase and 2′,3′-cyclic mononucleotide phosphodiesterase activities, it is also active as cyclic dinucleotide phosphodiesterase. PLoS ONE 2016, 11, e0157308. [Google Scholar] [CrossRef] [PubMed]
  15. Anraku, Y. A new cyclic phosphodiesterase having a 3′-nucleotidase activity from Escherichia coli B. I. Purification and some properties of the enzyme. J. Biol. Chem. 1964, 239, 3412–3419. [Google Scholar] [CrossRef] [PubMed]
  16. Krug, U.; Patzschke, R.; Zebisch, M.; Balbach, J.; Sträter, N. Contribution of the two domains of E. coli 5′-nucleotidase to substrate specificity and catalysis. FEBS Lett. 2013, 5793, 010. [Google Scholar] [CrossRef]
  17. López-Villamizar, I.; Cabezas, A.; Pinto, R.M.; Canales, J.; Ribeiro, J.M.; Rodrigues, J.R.; Costas, M.J.; Cameselle, J.C. Molecular dissection of Escherichia coli CpdB: Roles of the N domain in catalysis and phosphate inhibition, and of the C domain in substrate specificity and adenosine inhibition. Int. J. Mol. Sci. 2021, 22, 1977. [Google Scholar] [CrossRef]
  18. Knöfel, T.; Sträter, N. X-ray structure of the Escherichia coli periplasmic 5′-nucleotidase containing a dimetal catalytic site. Nat. Struct. Biol. 1999, 6, 448–453. [Google Scholar] [CrossRef]
  19. Knöfel, T.; Sträter, N.E. coli 5′-nucleotidase undergoes a hinge-bending domain rotation resembling a ball-and-socket motion. J. Mol. Biol. 2001, 309, 255–266. [Google Scholar] [CrossRef]
  20. Schultz-Heienbrok, R.; Maier, T.; Sträter, N. A large hinge bending domain rotation is necessary for the catalytic function of Escherichia coli 5′-nucleotidase. Biochemistry 2005, 44, 2244–2252. [Google Scholar] [CrossRef]
  21. Thammavongsa, V.; Schneewind, O.; Missiakas, D.M. Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA). BMC Biochem. 2011, 12, 56. [Google Scholar] [CrossRef] [PubMed]
  22. Fan, J.; Zhang, Y.; Chuang-Smith, O.N.; Frank, K.L.; Guenther, B.D.; Kern, M.; Schlievert, P.M.; Herzberg, M.C. Ecto-5′-nucleotidase: A candidate virulence factor in Streptococcus sanguinis experimental endocarditis. PLoS ONE 2012, 7, e38059. [Google Scholar] [CrossRef] [PubMed]
  23. Firon, A.; Dinis, M.; Raynal, B.; Poyart, C.; Trieu-Cuot, P.; Kaminski, P.A. Extracellular nucleotide catabolism by the Group B Streptococcus ectonucleotidase NudP increases bacterial survival in blood. J. Biol. Chem. 2014, 289, 5479–5489. [Google Scholar] [CrossRef]
  24. Zheng, L.; Khemlani, A.; Lorenz, N.; Loh, J.M.; Langley, R.J.; Proft, T. Streptococcal 5′-Nucleotidase A (S5nA), a Novel Streptococcus pyogenes Virulence Factor That Facilitates Immune Evasion. J. Biol. Chem. 2015, 290, 31126–31137. [Google Scholar] [CrossRef] [PubMed]
  25. Liu, P.; Pian, Y.; Li, X.; Liu, R.; Xie, W.; Zhang, C.; Zheng, Y.; Jiang, Y.; Yuan, Y. Streptococcus suis adenosine synthase functions as an effector in evasion of PMN-mediated innate immunity. J. Infect. Dis. 2014, 210, 35–45. [Google Scholar] [CrossRef] [PubMed]
  26. Andrade, W.A.; Firon, A.; Schmidt, T.; Hornung, V.; Fitzgerald, K.A.; Kurt-Jones, E.A.; Trieu-Cuot, P.; Golenbock, D.T.; Kaminski, P.A. Group B Streptococcus degrades cyclic-di-AMP to modulate STING-dependent type I interferon production. Cell Host Microbe 2016, 20, 49–59. [Google Scholar] [CrossRef]
  27. Cabezas, A.; Costas, M.J.; Canales, J.; Pinto, R.M.; Rodrigues, J.R.; Ribeiro, J.M.; Cameselle, J.C. Enzyme characterization of pro-virulent SntA, a cell wall-anchored protein of Streptococcus suis, with phosphodiesterase activity on cyclic-di-AMP at a level suited to limit the innate immune system. Front. Microbiol. 2022, 13, 843068. [Google Scholar] [CrossRef]
  28. Wan, Y.; Zhang, S.; Li, L.; Chen, H.; Zhou, R. Characterization of a novel streptococcal heme-binding protein SntA and its interaction with host antioxidant protein AOP2. Microb. Pathog. 2017, 111, 145–155. [Google Scholar] [CrossRef]
  29. Malik, A.; Shoombuatong, W.; Kim, C.B.; Manavalan, B. GPApred: The first computational predictor for identifying proteins with LPXTG-like motif using sequence-based optimal features. Int. J. Biol. Macromol. 2023, 229, 529–538. [Google Scholar] [CrossRef]
  30. Liu, H.; Chen, L.; Si, W.; Wang, C.; Zhu, F.; Li, G.; Liu, S. Physiology and pathogenicity of cpdB deleted mutant of avian pathogenic Escherichia coli. Res. Vet. Sci. 2017, 111, 21–25. [Google Scholar] [CrossRef]
  31. Liu, H.; Chen, L.; Wang, X.; Si, W.; Wang, H.; Wang, C.; Liu, S.; Li, G. Decrease of colonization in the chicks’ cecum and internal organs of Salmonella enterica serovar Pullorum by deletion of cpdB by Red system. Microb. Pathog. 2015, 80, 21–26. [Google Scholar] [CrossRef] [PubMed]
  32. Ribeiro, J.M.; Canales, J.; Costas, M.J.; Cabezas, A.; Pinto, R.M.; García-Díaz, M.; Martín-Cordero, P.; Cameselle, J.C. Genomic Distribution of Pro-Virulent cpdB-like Genes in Eubacteria and Comparison of the Enzyme Specificity of CpdB-like Proteins from Salmonella enterica, Escherichia coli and Streptococcus suis. Int. J. Mol. Sci. 2023, 24, 4150. [Google Scholar] [CrossRef] [PubMed]
  33. Gertz, E.M.; Yu, Y.K.; Agarwala, R.; Schaffer, A.A.; Altschul, S.F. Composition-based statistics and translated nucleotide searches: Improving the TBLASTN module of BLAST. BMC Biol. 2006, 4, 41. [Google Scholar] [CrossRef] [PubMed]
  34. Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
  35. Federhen, S. Type material in the NCBI Taxonomy Database. Nucleic Acids Res. 2015, 43, D1086–D1098. [Google Scholar] [CrossRef]
  36. Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; McVeigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef]
  37. Zakataeva, N.P. Microbial 5′-nucleotidases: Their characteristics, roles in cellular metabolism, and possible practical applications. Appl. Microbiol. Biotechnol. 2021, 105, 7661–7681. [Google Scholar] [CrossRef]
  38. UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
  39. Oren, A.; Garrity, G.M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 2021, 71, 005056. [Google Scholar] [CrossRef]
  40. Yamamoto, H.; Uchiyama, S.; Sekiguchi, J. Cloning and sequencing of a 40.6 kb segment in the 73 degrees-76 degrees region of the Bacillus subtilis chromosome containing genes for trehalose metabolism and acetoin utilization. Microbiology 1996, 142, 3057–3065. [Google Scholar] [CrossRef]
  41. Chambert, R.; Pereira, Y.; Petit-Glatron, M.F. Purification and characterization of YfkN, a trifunctional nucleotide phosphoesterase secreted by Bacillus subtilis. J. Biochem. 2003, 134, 655–660. [Google Scholar] [CrossRef] [PubMed]
  42. Burns, D.M.; Beacham, I.R. Identification and sequence analysis of a silent gene (ushA0) in Salmonella typhimurium. J. Mol. Biol. 1986, 192, 163–175. [Google Scholar] [CrossRef] [PubMed]
  43. Edwards, C.J.; Innes, D.J.; Burns, D.M.; Beacham, I.R. UDP-sugar hydrolase isozymes in Salmonella enterica and Escherichia coli: Silent alleles of ushA in related strains of group I Salmonella isolates, and of ushB in wild-type and K12 strains of E. coli, indicate recent and early silencing events, respectively. FEMS Microbiol. Lett. 1993, 114, 293–298. [Google Scholar]
  44. Innes, D.; Beacham, I.R.; Beven, C.A.; Douglas, M.; Laird, M.W.; Joly, J.C.; Burns, D.M. The cryptic ushA gene (ushA(c)) in natural isolates of Salmonella enterica (serotype Typhimurium) has been inactivated by a single missense mutation. Microbiology 2001, 147, 1887–1896. [Google Scholar] [CrossRef] [PubMed]
  45. Cherry, J.L. Selection-Driven Gene Inactivation in Salmonella. Genome. Biol. Evol. 2020, 12, 18–34. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Mutual relatedness among the set of proteins used to select TBlastN probes for bacterial genome analysis. An internal BlastP comparison was run among the 21 proteins in Table 1. The grid intersections show the alignment scores obtained. On the top line, the seven proteins selected for use are colored as in Table 1 to facilitate cross-referencing. Within the grid, the colors identify the proteins with high scores, indicative of strong relatedness. The seven probes selected cover, with high scores, the whole set of proteins. Nss, not significant similitude.
Figure 1. Mutual relatedness among the set of proteins used to select TBlastN probes for bacterial genome analysis. An internal BlastP comparison was run among the 21 proteins in Table 1. The grid intersections show the alignment scores obtained. On the top line, the seven proteins selected for use are colored as in Table 1 to facilitate cross-referencing. Within the grid, the colors identify the proteins with high scores, indicative of strong relatedness. The seven probes selected cover, with high scores, the whole set of proteins. Nss, not significant similitude.
Genes 14 01657 g001
Table 2. TBlastN analysis of superkingdom Bacteria (taxid:2) with hits recorded among 4185 type-material genomes.
Table 2. TBlastN analysis of superkingdom Bacteria (taxid:2) with hits recorded among 4185 type-material genomes.
Type of ProbeProbe 1HitsScore Max.Score Min.
UshA-likeP070246301099151
P445694561188151
WP_000726911468904151
WP_0118370081101297151
O32133361947171
CpdB-likeP0833110821301151
AYV645437221579153
1 The probes are shown in the same background color as Figure 1 and Table 1 to facilitate cross-referencing.
Table 3. Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in Bacteria phyla. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in 100% of the genomes analyzed. Full data can be found in Table S1.
Table 3. Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in Bacteria phyla. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in 100% of the genomes analyzed. Full data can be found in Table S1.
Phylum 1TaxidUC
Abditibacteriota2109258
Acidobacteriota57723
Actinomycetota201174++
Aquificota200783
Armatimonadota67819++
Atribacterota67818+
Bacillota1239++
Bacteroidota976++
Balneolota1936987+
Bdellovibrionota3018035
Caldisericota67814+
Calditrichota1930617+
Campylobacterota29547++
Chlamydiota204428
Chlorobiota1090
Chloroflexota200795+
Chrysiogenota200938
Coprothermobacterota2138240+
Cyanobacteriota1117+
Deferribacterota200930+
Delta/epsilon subdivisions68525+
Deinococcota1297++
Dictyoglomota68297+
Elusimicrobiota74152
Fibrobacterota65842+
Fusobacteriota32066++
Gemmatimonadota142182+
Ignavibacteriota1134404+
Kiritimatiellota134625
Lentisphaerota256845
Mycoplasmatota544448++
Myxococcota2818505++
Nitrospinota1293497
Nitrospirota40117+
Planctomycetota203682
Pseudomonadota1224++
Rhodothermota1853220
Spirochaetota203691++
Synergistota508458+
Thermodesulfobacteriota200940+
Thermomicrobiota3027942
Thermotogota200918++
Verrucomicrobiota74201+
1 Phyla highlighted in red are not complete according to Section 3.2.1 and are divided into classes in Table 4 and Table S2.
Table 4. Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in selected bacterial classes. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in all the genomes. Full data are in Table S2.
Table 4. Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in selected bacterial classes. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in all the genomes. Full data are in Table S2.
PhylumClass 1TaxidUC
ActinomycetotaAcidimicrobiia84992+
Actinomycetes1760++
Coriobacteriia84998
Nitriliruptoria908620++
Rubrobacteria84995+
Thermoleophilia1497346+
ArmatimonadotaArmatimonadia1042312
Chthonomonadetes1077257+
Fimbriimonadia 1663419+
BacillotaBacilli91061++
Clostridia 186801++
Erysipelotrichia526524++
Limnochordia1676648++
Negativicutes 909932++
Tissierellia 1737404+
BacteroidotaBacteroidia200643++
Chitinophagia1853228
Cytophagia768503
Flavobacteriia117743
Saprospiria1937959
Sphingobacteriia117747
CampylobacterotaDesulfurellia3031853
Epsilonproteobacteria3031852++
ChloroflexotaAnaerolineae292625
Ardenticatenia *1382928+
Caldilineae475962
Chloroflexia32061+
Dehalococcoidia301297+
Ktedonobacteria388447
Tepidiformia2682225
Thermoflexia1495646+
CyanobacteriotaCyanophyceae3028117+
DeferribacterotaDeferribacteres68337+
Delta/epsilon subdivisionsDeltaproteobacteria28221+
DeinococcotaDeinococci188787++
DyctioglomotaDictyoglomia203486+
FibrobacterotaFibrobacteria204430
FusobacteriotaFusobacteriia 203490++
GemmatimonadotaGemmatimonadetes219685+
Longimicrobiia1804991
IgnavibacteriotaIgnavibacteria795747+
MycoplasmatotaMollicutes31969+
Mycoplasmoidales2790996
MyxococcotaMyxococcia32015++
Polyangia3031711++
NitrospirotaNitrospiria203693+
Thermodesulfovibrionia2811502
PseudomonadotaAcidithiobacillia1807140
Alphaproteobacteria28211++
Betaproteobacteria28216++
Gammaproteobacteria1236++
Hydrogenophilalia2008785
Zetaproteobacteria580370
SpirochaetotaSpirochaetia203692++
SynergistotaSynergistia649775+
ThermodesulfobacteriotaDesulfarculia3031646
Desulfobaccia3031647
Desulfobacteria3024418+
Desulfobulbia3031451+
Desulfomonilia3031650+
Desulfovibrionia3031449+
Desulfuromonadia3031651+
Syntrophia3031648+
Syntrophobacteria 3024408+
Thermodesulfobacteria67799+
ThermotogotaThermotogae188708++
VerrucomicrobiotaMethylacidiphilae1955630
Opitutae414999++
Spartobacteria134549
Verrucomicrobiae203494
1 Classes highlighted in red are not complete according to Section 3.2.1 and are divided into orders in Table 5 and Table S3, except for one *. * The class Ardenticatenia does not appear in Table 5 because the single hit obtained in the TBlastN analysis corresponds to a “candidatus” order.
Table 5. Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in selected bacterial orders. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in all the genomes. Full data can be found in Table S3.
Table 5. Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in selected bacterial orders. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in all the genomes. Full data can be found in Table S3.
ClassOrder 1TaxidUC
AcidimicrobiiaAcidimicrobiales84993+
ActinomycetesAcidothermales1643683
Actinomycetales2037+
Actinopolysporales622450
Bifidobacteriales85004
Catenulisporales414714
Frankiales85013
Geodermatophilales1643682+
Glycomycetales85014+
Jatrophihabitantales2805415++
Kineosporiales622452+
Kitasatosporales85011++
Micrococcales85006++
Micromonosporales85008++
Mycobacteriales85007+
Nakamurellales1643684
Propionibacteriales85009++
Pseudonocardiales85010++
Sporichthyales2495578+
Streptosporangiales85012++
NitriliruptoriaEgibacterales1747768
Egicoccales1755823++
Euzebyales908621
RubrobacteriaRubrobacterales84996+
ThermoleophiliaMiltoncostaeales2843198+
Solirubrobacterales588673
Thermoleophilales588674
FimbriimonaadiaFimbriimonadales1663425+
BacilliBacillales1385++
Lactobacillales186826++
ClostridiaEubacteriales186802++
Halanaerobiales53433++
Koleobacterales2786987
Moorellales3039167
Natranaerobiales485256
Thermoanaerobacterales68295++
Thermosediminibacterales2770089++
ErysipelotrichiaErysipelotrichales526525++
NegativicutesAcidaminococcales1843488
Selenomonadales909929++
Veillonellales1843489+
TissierellaTissierellales1737405+
BacteroidiaBacteroidales171549++
Marinilabiliales1970189
EpsilonproteobacteriaCampylobacterales213849++
Nautiliales235899+
DehalococcoidiaDehalococcoidales1202465
Dehalogenimonas670486
CyanophyceaeChroococcidiopsidales1890505
Gloeobacterales307595
Gloeomargaritales1955042+
Nostocales1161+
Chroococcales1118
Oscillatoriales1150+
Pleurocapsales52604
Pseudanabaenales2881377
Synechococcales1890424
Thermostichales2881383
DeferribacteresDeferribacterales191393+
DeltaproteobacteriaBradymonadales1779134+
DeinococciDeinococcales118964++
Thermales68933+
Trueperales2762275
FusobacteriiaFusobacteriales203491++
GemmatimonadetesGemmatimonadales219686+
IgnavibacteriaIgnavibacteriales795748+
MollicutesAcholeplasmatales186329
Entomoplasmatales186328
Mycoplasmatales2085+
MyxococciaMyxococcales29++
PolyangiaHaliangiales3031714+
Nannocystales3031713++
Polyangiales3031712++
NitrospiriaNitrospirales189778+
AlphaproteobacteriaCaulobacterales204458
Emcibacterales2066490
Holosporales1921002
Hyphomicrobiales356++
Hyphomonadales2800060+
Kordiimonadales362534
Magnetococcales1191478
Maricaulales2800059
Minwuiales2493627
Parvularculales255473
Rhodobacterales204455++
Rhodospirillales204441++
Rickettsiales766
Sneathiellales510684
Sphingomonadales204457+
BetaproteobacteriaBurkholderiales80840++
Ferrovales1442155
Neisseriales206351++
Nitrosomonadales32003+
Rhodocyclales206389++
GammaproteobacteriaAcidiferrobacterales1692040
Aeromonadales135624++
Alteromonadales135622++
Cardiobacteriales135615+
Cellvibrionales1706369++
Chromatiales135613++
Enterobacterales91347++
Immundisolibacterales1934945+
Kangiellales2887327
Legionellales118969+
Methylococcales135618+
Moraxellales2887326++
Nevskiales1775403+
Oceanospirillales135619++
Orbales1240482++
Pasteurellales135625++
Pseudomonadales72274+
Thiotrichales72273++
Vibrionales135623++
Xanthomonadales135614+
SpirochaetiaBrachyspirales1643686+
Brevinematales1643687
Leptospirales1643688
Spirochaetales136++
SynergistiaSynergistales649775+
DesulfobacteriaDesulfobacterales213118+
DesulfobulbiaDesulfobulbales3024411+
DesulfovibrioniaDesulfovibrionales213115+
DesulfuromonadiaDesulfuromonadales69541+
Geobacterales3031668+
SyntrophobacteriaSyntrophobacterales213462+
ThermodesulfobacteriaThermodesulfobacteriales188710+
ThermotogaeKosmotogales1643946++
Mesoaciditogales1769716++
Petrotogales1643947++
Thermotogales2419++
OpitutaeOpitutales415000++
Puniceicoccales415001
1 Orders highlighted in red are not complete according to Section 3.2.1 and are divided into families in Table 6 and Table S4.
Table 6. Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in selected bacterial families. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in all the genomes. Full data can be found in Table S4.
Table 6. Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in selected bacterial families. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in all the genomes. Full data can be found in Table S4.
OrderFamily 1TaxidUC
AcidimicrobialesAcidimicrobiaceae84994
Iamiaceae633392
Ilumatobacteraceae2448023+
ActinomycetalesActinomycetaceae2049+
GeodermathophilalesGeodermatophilaceae85030+
JatrophihabitantalesJatrophihabitantaceae2805416++
KineosporialesKineosporiaceae83778+
KitasatosporalesStreptomycetaceae2062++
MicrococcalesBeutenbergiaceae125316
Bogoriellaceae145358++
Brevibacteriaceae85019++
Cellulomonadaceae85016
Demequinaceae1042322
Dermabacteraceae85020+
Dermacoccaceae145357++
Dermatophilaceae85018+
Intrasporangiaceae85021++
Jonesiaceae85022
Kytococcaceae2805426+
Microbacteriaceae85023++
Micrococcaceae1268++
Ornithinimicrobiaceae2805590+
Promicromonosporaceae85017+
Ruaniaceae1331736++
Sanguibacteraceae145360+
Tropherymataceae2805591
MicromonosporalesMicromonosporaceae28056++
MycobacterialesCorynebacteriaceae1653+
Dietziaceae85029
Gordoniaceae85026
Hoyosellaceae3040680
Lawsonellaceae2805586
Mycobacteriaceae1762
Nocardiaceae85025+
Segniliparaceae316606
Tsukamurellaceae85028+
PropionibacterialesKribbellaceae2726069++
Nocardioidaceae85015++
Propionibacteriaceae31957+
PseudonocardialesPseudonocardiaceae2070++
StreptosporangialesNocardiopsaceae83676
Streptosporangiaceae2004++
Thermomonosporaceae2012++
RubrobacteralesBaekduiaceae2600303+
Rubrobacteraceae84997+
MiltoncostaealesMiltoncostaeaceae2843199+
FimbriimonadalesFimbriimonadaceae1663426
BacillalesAlicyclobacillaceae186823++
Bacillaceae186817++
Listeriaceae186820+
Paenibacillaceae186822++
Planococcaceae186818++
Sporolactobacillaceae186821++
Staphylococcaceae90964++
Thermoactinomycetaceae186824++
LactobacillalesAerococcaceae186827++
Carnobacteriaceae186828++
Enterococcaceae81852++
Lactobacillaceae33958++
Streptococcaceae1300++
EubacterialesAristaeellaceae3046368
Cellulosilyticaceae3018741
Christensenellaceae990719
Clostridiaceae31979++
Desulfallaceae2867375
Desulfitobacteriaceae2937909+
Desulfotomaculaceae2937910
Eubacteriaceae186806+
Heliobacteriaceae31984
Lachnospiraceae186803++
Maliibacteriaceae3047432
Oscillospiraceae216572++
Peptococcaceae186807
Peptostreptococcaceae186804+
Proteinivoraceae1491775
Symbiobacteriaceae543349
Syntrophomonadaceae68298
Thermincolaceae2937911
Vallitaleaceae2603322++
HalanaerobialesHalanaerobiaceae972++
Halarsenatibacteraceae3046411
Halobacteroidaceae53434++
Halothermotrichaceae3046412
ThermoanaerobacteralesThermoanaerobacteraceae186814++
Thermodesulfobiaceae227387
ThermosediminibacteralesTepidanaerobacteraceae2770092
Thermosediminibacteraceae2770093++
ErysipelotrichalesCoprobacillaceae2810280
Erysipelotrichaceae128827++
Turicibacteraceae2810281+
SelenomonadalesSelenomonadaceae1843491++
Sporomusaceae1843490++
VeillonellalesVeillonellaceae31977+
TissierellalesAcidilutibacteraceae2992717
Gottschalkiaceae2042895+
Peptoniphilaceae1570339
Tepidimicrobiaceae2992719+
Thermohalobacteraceae2848916+
Tissierellaceae1737406++
BacteroidalesBacteroidaceae815+
Barnesiellaceae2005519++
Dysgonomonadaceae2005520
Muribaculaceae2005473+
Odoribacteraceae1853231+
Paludibacteraceae2005523
Porphyromonadaceae171551+
Prevotellaceae171552+
Rikenellaceae171550
Salinivirgaceae1970190
Tannerellaceae2005525+
Tenuifilaceae2760872
CampylobacteralesArcobacteraceae2808963+
Campylobacteraceae72294+
Helicobacteraceae72293+
Hydrogenimonadaceae292630
Sulfurimonadaceae2771471
Sulfurospirillaceae2932623
Sulfurovaceae2771472
NautilialesNautiliaceae224467+
Nitratiruptoraceae2795691
NostocalesAphanizomenonaceae1892259
Calotrichaceae2661849+
Hapalosiphonaceae1892263
Nostocaceae1162
Rivulariaceae1185
Tolypothrichaceae119859
OscillatorialesColeofasciculaceae1892251
Gomontiellaceae1892255
Microcoleaceae1892252+
Oscillatoriaceae1892254
DeferribacteralesCalditerrivibrionaceae2945021
Deferribacteraceae191394
Flexistipitaceae2945022
Geovibrionaceae2945019+
Mucispirillaceae2945020
DeinococcalesDeinococcaceae183710++
ThermalesThermaceae188786+
FusobacterialesFusobacteriaceae203492+
Leptotrichiaceae1129771++
GemmatimonadalesGemmatimonadaceae219687+
IgnavibacterialesIgnavibacteriaceae795749+
Melioribacteraceae1334117
MycoplasmatalesMycoplasmataceae2092+
MyxococcalesAnaeromyxobacteraceae1524215
Archangiaceae39++
Myxococcaceae31++
Vulgatibacteraceae1524213+
PolyangialesLabilitrichaceae1524216
Polyangiaceae49++
Sandaracinaceae1055686
NitrospiralesNitrospiraceae189779+
HyphomicrobialesAmorphaceae2685818
Aurantimonadaceae255475++
Bartonellaceae772
Beijerinckiaceae45404
Blastochloridaceae2831090
Boseaceae2831100+
Breoghaniaceae2831104++
Brucellaceae118882+
Chelatococcaceae2036754
Devosiaceae2831106++
Hyphomicrobiaceae45401
Kaistiaceae2831111
Lichenihabitantaceae2723775
Methylobacteriaceae119045++
Methylocystaceae31993
Nitrobacteraceae41294+
Parvibaculaceae2813035
Phreatobacteraceae2843305
Phyllobacteriaceae69277++
Pleomorphomonadaceae2843308+
Rhizobiaceae82115++
Stappiaceae2821832++
Xanthobacteraceae335928
HyphomonadalesHyphomonadaceae69657+
RhodobacteralesParacoccaceae31989++
Roseobacteraceae2854170++
RhodospirillalesAcetobacteraceae433++
Azospirillaceae2829815++
Elioraeaceae2690195+
Geminicoccaceae2066434
Kiloniellaceae597359++
Rhodospirillaceae41295
Stellaceae2844601
Terasakiellaceae2813951
Thalassobaculaceae2844864
Thalassospiraceae2844866++
SphingomonadalesErythrobacteraceae335929+
Sphingomonadaceae41297+
Sphingosinicellaceae2820280+
Zymomonadaceae2844881
BurkholderialesAlcaligenaceae506++
Burkholderiaceae119060++
Comamonadaceae80864++
Oxalobacteraceae75682++
Sphaerotilaceae2975441++
Sutterellaceae995019+
NeisserialesChromobacteriaceae1499392++
Neisseriaceae481++
NitrosomonadalesGallionellaceae90627
Methylophilaceae32011
Nitrosomonadaceae206379
Sterolibacteriaceae2008793
Sulfuricellaceae2772226
Thiobacillaceae2008790+
Usitatibacteraceae2803844+
RhodocyclalesAzonexaceae2008795+
Fluviibacteraceae2808923
Rhodocyclaceae75787++
Zoogloeaceae2008794+
AeromonadalesAeromonadaceae84642++
Succinivibrionaceae83763
AlteromonadalesAlteromonadaceae72275++
Colwelliaceae267889+
Ferrimonadaceae267892++
Idiomarinaceae267893++
Moritellaceae267891++
Pseudoalteromonadaceae267888++
Psychromonadaceae267894++
Shewanellaceae267890++
CardiobacterialesCardiobacteriaceae868
Ignatzschineriaceae3018589+
CellvibrionalesCellvibrionaceae1706371++
Halieaceae1706372
Microbulbiferaceae1706373++
Porticoccaceae1706374
Spongiibacteraceae1706375+
ChromatialesChromatiaceae1046+
Ectothiorhodospiraceae72276+
Granulosicoccaceae449719++
Halothiobacillaceae255526
Thioalkalibacteraceae2035710
Thioalkalispiraceae1096778
Wenzhouxiangellaceae1676141
Woeseiaceae1738654
EnterobacteralesBruguierivoracaceae2812006
Budviciaceae1903416+
Enterobacteriaceae543++
Erwiniaceae1903409++
Hafniaceae1903412++
Morganellaceae1903414++
Pectobacteriaceae1903410++
Yersiniaceae1903411++
LegionellalesCoxiellaceae118968
Legionellaceae444+
MethylococcalesMethylococcaceae403+
Methylothermaceae1486721
MoraxellalesMoraxellaceae468++
NevskialesNevskiaceae568386+
Steroidobacteraceae2689614
OceanospirillalesAlcanivoracaceae224372++
Endozoicomonadaceae2066474++
Hahellaceae224379+
Halomonadaceae28256++
Litorivicinaceae449732
Oceanospirillaceae135620++
Oleiphilaceae191033++
Saccharospirillaceae255527++
Zooshikellaceae2898533+
OrbalesOrbaceae1240483++
PasteurellalesPasteurellaceae712++
PseudomonadalesMarinobacteraceae2887365
Pseudomonadaceae135621+
ThiotrichalesFastidiosibacteraceae2056687
Francisellaceae34064
Piscirickettsiaceae135616+
Thiotrichaceae135617++
VibrionalesVibrionaceae641++
XanthomonadalesRhodanobacteraceae1775411+
Xanthomonadaceae32033+
BrachyspiralesBrachyspiraceae143786+
SpirochaetalesBorreliaceae1643685
Breznakiellaceae2951104++
Sphaerochaetaceae2791015++
Spirochaetaceae137++
Treponemataceae2845253++
SynergistalesAcetomicrobiaceae3029086
Aminithiophilaceae3029085+
Aminobacteriaceae3029087
Dethiosulfovibrionaceae3029088
Synergistaceae649777+
Thermovirgaceae3029089
DesulfobacteralesDesulfatibacillaceae3031627+
Desulfobacteraceae213119+
Desulfococcaceae2931039
Desulfolunaceae3031622
Desulfosarcinaceae3031624+
Desulfosudaceae2904715
DesulfobulbalesDesulfobulbaceae213121+
Desulfocapsaceae2886822+
DesulfovibrionalesDesulfohalobiaceae213117
Desulfomicrobiaceae213116+
Desulfovibrionaceae194924+
DesulfuromonadalesDesulfuromonadaceae213421+
Geoalkalibacteraceae3031665
Syntrophotaleaceae2812024
GeobacteralesGeobacteraceae213422+
SyntrophobacterialesSyntrophobacteraceae213465+
ThermodesulfobacterialesThermodesulfatatoraceae3031464+
Thermodesulfobacteriaceae188711
PetrotogalesPetrotogaceae1643949++
ThermotogalesFervidobacteriaceae1643950++
Thermotogaceae188709+
OpitutalesOpitutaceae134623++
1 Families highlighted in red are not complete according to Section 3.2.1 and are divided into genera in Table 7 and Table S5.
Table 7. Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in selected bacterial genera. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in all the genomes. Full data can be found in Table S5.
Table 7. Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in selected bacterial genera. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in all the genomes. Full data can be found in Table S5.
FamilyGenus 1TaxidUC
ActinomycetaceaeFlaviflexus1522056+
GeodermatophilaceaeBlastococcus38501+
Geodermatophilus1860+
Modestobacter88138+
JatrophihabitantaceaeJatrophihabitans1434010++
KineosporiaceaeKineococcus33981+
StreptomycetaceaeKitasatospora2063++
Peterkaempfera2995704++
Streptantibioticus2995706+
Streptomyces1883++
BogoriellaceaeGeorgenia154116++
BrevibacteriaceaeBrevibacterium1696++
DermabacteraceaeDermabacter36739+
DermacoccaceaeLuteipulveratus745364++
DermatophilaceaeAustwickia1184606+
Dermatophilus1862+
IntrasporangiaceaeArsenicicoccus267408+
Intrasporangium53357++
Janibacter53457+
Phycicoccus367298++
Tetrasphaera99479+
MicrobacteriaceaeClavibacter1573+
Microbacterium33882++
Protaetiibacter2680004+
Rathayibacter33886+
MicrococcaceaeArthrobacter1663++
OrnithinimicrobiaceaeOrnithinimicrobium125287+
Serinicoccus265976+
PromicromonosporaceaeIsoptericola254250+
RuaniaceaeOccultella2828348++
Ruania626119+
SanguibacteraceaeSanguibacter60919+
MicromonosporaceaeActinocatenispora390988+
Actinoplanes1865++
Dactylosporangium35753++
Micromonospora1873++
Phytohabitans907364+
Salinispora168694+
CorynebacteriaceaeCorynebacterium1716++
NocardiaceaeNocardia1817+
Rhodococcus1827+
TsukamurellaceaeTsukamurella2060+
NocardioidaceaeNocardioides1839++
PropionibacteriaceaeCutibacterium1912216+
PseudonocardiaceaeActinosynnema40566+
Amycolatopsis1813+
Kibdelosporangium2029+
Kutzneria43356++
Lentzea165301++
Pseudonocardia1847+
Saccharopolyspora1835+
Saccharothrix2071++
StreptosporangiaceaeNonomuraea83681++
Streptosporangium2000++
Thermobispora147067+
ThermomonosporaceaeActinomadura1988++
BaekduiaceaeBaekduia2600304+
RubrobacteraceaeRubrobacter42255+
MiltoncostaeaceaeMiltoncostaea2843200+
AlicyclobacillaceaeAlicyclobacillus29330++
Effusibacillus1502725+
Tumebacillus432330+
BacillaceaeAlkalihalobacillus2675234++
Allobacillus1400133++
Amphibacillus29331+
Anaerobacillus704093+
Anoxybacillus150247++
Bacillus1386++
Cytobacillus2675230++
Evansella2837485++
Fervidibacillus3033930+
Geobacillus129337++
Gracilibacillus74385++
Halalkalibacter2893056+
Halobacillus45667++
Heyndrickxia2837504++
Lederbergia2804231+
Lentibacillus175304++
Lysinibacillus400634++
Mangrovibacillus2920444++
Metabacillus2675233++
Oceanobacillus182709++
Paenalkalicoccus2944627++
Parageobacillus1906945+
Paraliobacillus200903++
Peribacillus2675229++
Priestia2800373++
Psychrobacillus1221880++
Radiobacillus2785518++
Salicibibacter2685905++
Salimicrobium351195+
Salisediminibacterium1434042++
Sediminibacillus482460++
Sutcliffiella2837511++
Virgibacillus84406++
Weizmannia2817139++
PaenibacillaceaeAneurinibacillus55079+
Brevibacillus55080++
Cohnella329857++
Paenibacillus44249++
Saccharibacillus456492++
Thermobacillus76632+
PlanococcaceaeJeotgalibacillus157226+
Paenisporosarcina651660++
Planococcus1372++
Sporosarcina1569++
SporolactobacillaceaePullulanibacillus475230+
Sporolactobacillus2077++
StaphylococcaceaeMacrococcus69965++
Mammaliicoccus2803850++
Nosocomiicoccus489909+
Staphylococcus1279++
ThermoactinomycetaceaeKroppenstedtia1274351++
Polycladomyces1348505++
Novibacillus1677050+
Staphylospora2689589+
LactobacillaceaeAcetilactobacillus2767874++
Amylolactobacillus2767876++
Apilactobacillus2767877++
Bombilactobacillus2767878++
Companilactobacillus2767879+
Fructilactobacillus2767881++
Fructobacillus559173++
Lacticaseibacillus2759736++
Lactiplantibacillus2767842++
Lactobacillus1578++
Latilactobacillus2767885+
Lentilactobacillus2767893++
Leuconostoc1243++
Levilactobacillus2767886++
Limosilactobacillus2742598+
Loigolactobacillus2767889++
Nicoliella2978367++
Oenococcus46254++
Paucilactobacillus2767890+
Pediococcus1253+
Periweissella2930384++
Weissella46255++
StreptococcaceaeLactococcus1357++
Streptococcus1301++
EnterococcaceaeEnterococcus1350++
Tetragenococcus51668+
Vagococcus2737++
CarnobacteriaceaeCarnobacterium2747++
Granulicatella117563++
Jeotgalibaca1470540+
AerococcaceaeAerococcus1375++
Suicoccus2689587+
ClostridiaceaeAlkaliphilus114627++
Clostridium1485++
Crassaminicella1848399+
Geosporobacter390805+
Hathewaya1769729+
Paraclostridium1849822++
DesulfitobacteriaceaeDesulfosporosinus79206+
EubacteriaceaeEubacterium1730+
LachnospiraceaeAnaerocolumna1843210+
Anaeromicropila3024823+
Anaeropeptidivorans2997360+
Herbinix1663717+
Lachnoclostridium1506553+
Tyzzerella1506577+
OscillospiraceaeAnaerotruncus244127++
Flavonifractor946234++
Ruminiclostridium1508657+
Vescimonas2892396+
PeptostreptococcaceaeAcetoanaerobium186831+
Clostridioides1870884+
VallitaleaceaePetrocella2603323++
Vallitalea1348611++
HalanaerobiaceaeHalanaerobium2330++
Halocella46466++
Iocasia2899804++
HalobacteroidaceaeHalobacteroides42417++
ThermoanaerobacteraceaeAceticella3051499+
Caldanaerobacter249529+
Carboxydothermus129957++
Thermoanaerobacter1754++
Thermoanaerobacterium28895+
ErysipelotrichaceaeErysipelothrix1647++
TuricibacteraceaeTuricibacter191303+
SelenomonadaceaeSelenomonas970++
SporomusaceaeMethylomusa2093783++
Pelosinus365348+
VeillonellaceaeMegasphaera906+
TissierellaceaeGudongella2692382+
Tissierella41273++
BacteroidaceaeBacteroides816+
Phocaeicola909656+
BarnesiellaceaeBarnesiella397864+
Coprobacter1348911+
MuribaculaceaeDuncaniella2518495+
Muribaculum1918540+
Sodaliphilus2815786+
OdoribacteraceaeOdoribacter283168+
PorphyromonadaceaePorphyromonas836+
PrevotellaceaePrevotella838+
Pseudoprevotella2884814+
TannerellaceaeParabacteroides375288+
ArcobacteraceaeArcobacter28196+
Malaciobacter2321114+
CampylobacteraceaeCampylobacter194+
HelicobacteraceaeHelicobacter209+
NautiliaceaeCaminibacter191301+
CalotrichaceaeCalothrix1186+
MicrocoleaceaePlanktothrix54304+
DeinococcaceaeDeinococcus1298++
ThermaceaeAllomeiothermus2935559+
Meiothermus2747271+
Oceanithermus208447+
Thermus270+
FusobacteriaceaeFusobacterium848+
LeptotrichiaceaeLeptotrichia32067++
Pseudoleptotrichia2755140+
Sebaldella32068++
Streptobacillus34104+
GemmatimonadaceaeGemmatimonas173479+
MycoplasmataceaeMycoplasmopsis2767358+
ArchangiaceaeArchangium47++
Cystobacter42++
Melittangium44++
Stigmatella40++
MyxococcaceaeCorallococcus83461++
Myxococcus32++
PolyangiaceaeChondromyces50+
Polyangium55++
Sorangium39643++
NitrospiraceaeNitrospira1234+
AurantimonadaceaeAurantimonas182269+
Aureimonas414371++
Jiella1775688+
Martelella293088++
BoseaceaeBosea85413+
BrucellaceaePseudochrobactrum354349+
DevosiaceaeDevosia46913++
Paradevosia1573407++
Pelagibacterium1082930++
Youhaiella1827478++
MethylobacteriaceaeMicrovirga186650++
NitrobacteraceaeBradyrhizobium374+
Rhodopseudomonas1073+
PhyllobacteriaceaeAquibium2911176++
Mesorhizobium68287++
Nitratireductor245876++
Oricola1594166++
Phyllobacterium28100++
Roseitalea1915401+
Salaquimonas2712688+
RhizobiaceaeAgrobacterium357++
Allorhizobium78526++
Ciceribacter1648508++
Ensifer106591++
Georhizobium2661800++
Neorhizobium1525371++
Peteryoungia2853332++
Pseudorhizobium1903858++
Rhizobium379++
Shinella323620++
Sinorhizobium28105++
StappiaceaeLabrenzia478070++
Pannonibacter227873++
Roseibium150830++
Stappia152161+
ParacoccaceaeAlgicella3050722++
Cereibacter1653176++
Frigidibacter1775705++
Gemmobacter204456++
Gymnodinialimonas2937410++
Neotabrizicola2946607+
Pacificitalea2846749++
Paracoccus265++
Parasedimentitalea2738399++
Paroceanicella2683599++
Pelagovum2795377++
Polymorphum991903+
Pontivivens1844015++
Profundibacter2778525+
Pseudooceanicola1679449++
Pseudopuniceibacterium2613960++
Pseudorhodobacter238783+
Pukyongiella2831925++
Qingshengfaniella2816884++
Rhodobaca119541++
Rhodovulum34008++
Roseicitreum1209946++
Silicimonas1955420++
Tabrizicola1443919++
Thioclava285107+
RoseobacteraceaeCeleribacter875170++
Dinoroseobacter309512++
Falsihalocynthiibacter2854182++
Leisingera191028++
Octadecabacter53945++
Phaeobacter302485++
Roseibacterium159345++
Roseobacter2433++
Roseovarius74030++
Ruegeria97050++
Salipiger263377++
Sulfitobacter60136++
AcetobacteraceaeAcetobacter434+
Lichenicola2804525+
Roseomonas125216++
AzospirillaceaeSkermanella204447++
ThalassospiraceaeThalassospira168934++
ErythrobacteraceaeAltererythrobacter361177+
Aurantiacibacter2800681+
Croceicoccus1295327+
Pelagerythrobacter2800685+
Qipengyuania1855416+
Tsuneonella2800686+
SphingomonadaceaeNovosphingobium165696+
Sphingomonas13687+
SphingosinicellaceaeSphingosinicella335405+
AlcaligenaceaeAchromobacter222++
Bordetella517++
BurkholderiaceaeBurkholderia32008+
Chitinimonas240411+
Cupriavidus106589++
Ephemeroptericola2680021+
Paraburkholderia1822464+
Ralstonia48736++
ComamonadaceaeAcidovorax12916++
Comamonas283++
Delftia80865++
Diaphorobacter238749++
Ottowia219181++
Paenacidovorax3051138++
Paracidovorax3051137++
Rhodoferax28065++
OxalobacteraceaeCollimonas202907++
Duganella75654++
Janthinobacterium29580++
Massilia149698++
Pseudoduganella1522432++
Telluria34069++
Undibacterium401469++
SphaerotilaceaeCaldimonas196013+
Ideonella36862+
Inhella644355++
SutterellaceaeSutterella40544+
ChromobacteriaceaeChitinibacter230666+
Chromobacterium535++
Deefgea400947+
Iodobacter32014++
Paludibacterium400060++
NeisseriaceaeAlysiella194195++
Chitinolyticbacter1055692+
Conchiformibius334107+
Kingella32257++
Neisseria482+
Simonsiella71+
Wielerella2944815+
ThiobacillaceaeThiobacillus919+
AzonexaceaeDechloromonas73029+
Ferribacterium88875+
RhodocyclaceaeNiveibacterium1769726++
ZoogloeaceaeAzoarcus12960+
Nitrogeniibacter2891294+
AeromonadaceaeAeromonas642++
AlteromonadaceaeAgarivorans261825++
Hydrocarboniclastica2650549+
Saliniradius2661818+
ColwelliaceaeLitorilituus1407056+
FerrimonadaceaeFerrimonas44011++
IdiomarinaceaeIdiomarina135575++
PseudoalteromonadaceaePseudoalteromonas53246++
Psychrosphaera907197+
PsychromonadaceaePsychromonas67572++
ShewanellaceaeParashewanella2547964++
Shewanella22++
CellvibrionaceaeMarinagarivorans1792291+
Saccharophagus316625+
Teredinibacter2425++
MicrobulbiferaceaeMicrobulbifer48073++
SpongiibacteraceaeSpongiibacter630749+
ChromatiaceaeAllochromatium85072+
Caldichromatium2828366+
Marichromatium85076+
Thermochromatium85073+
Thiocapsa1056+
Thiocystis13724+
EctothiorhodospiraceaeThioalkalivibrio106633+
GranulosicoccaceaeGranulosicoccus437504++
BudviciaceaePragia82984+
EnterobacteriaceaeAtlantibacter1903434++
Cedecea158483++
Citrobacter544++
Cronobacter413496++
Enterobacter547++
Escherichia561++
Jejubacter2815296++
Klebsiella570++
Kluyvera579++
Kosakonia1330547++
Leclercia83654++
Lelliottia1330545++
Plesiomonas702++
Pseudocitrobacter1504576++
Raoultella160674++
Salmonella590++
Scandinavium2726810++
Shigella620++
Shimwellia1335483+
Symbiopectobacterium801++
ErwiniaceaeErwinia551++
Mixta2100764++
Pantoea53335++
HafniaceaeEdwardsiella635+
Hafnia568++
Obesumbacterium82982++
MorganellaceaeArsenophonus637+
Morganella581++
Photorhabdus29487++
Proteus583++
Providencia586++
Xenorhabdus626++
PectobacteriaceaeBrenneria71655++
Dickeya204037++
PectobacteriaceaePectobacterium122277++
YersiniaceaeChania1745211++
Gibbsiella929812+
Rouxiella1565532+
Serratia613++
Yersinia629++
LegionellaceaeLegionella445+
MethylococcaceaeMethylocaldum73778+
Methylococcus413+
Methylomagnum1760987+
Methylomonas416+
MoraxellaceaeAcinetobacter469++
Aquirhabdus2824158+
Moraxella475+
NevskiaceaeSolimonas413435+
AlcanivoracaceaeAlcanivorax59753++
Alloalcanivorax3020832++
EndozoicomonadaceaeEndozoicomonas305899++
HalomonadaceaeCobetia204286++
Zymobacter33073+
OceanospirillaceaeAliamphritea3018276+
Marinomonas28253++
Neptunomonas75687+
Thalassolituus187492++
SaccharospirillaceaeGynuella1445504++
Reinekea230494+
Saccharospirillum231683++
OrbaceaeFrischella1335631+
Gilliamella1193503++
Zophobihabitans2894762+
PasteurellaceaeActinobacillus713++
Aggregatibacter416916++
Avibacterium292486++
Basfia697331++
Bisgaardia109471++
Frederiksenia1649317++
Haemophilus724++
Mannheimia75984++
Otariodibacter1249016++
Pasteurella745++
Rodentibacter1960084++
PseudomonadaceaePseudomonas286+
Stutzerimonas2901164+
PiscirickettsiaceaeThiomicrorhabdus2039723+
ThiotrichaceaeBeggiatoa1021+
Thiothrix1030++
VibrionaceaeAliivibrio511678++
Paraphotobacterium2042066+
Photobacterium657++
Salinivibrio51366++
Thaumasiovibrio2014233+
Vibrio662++
RhodanobacteraceaeAerosticca2707020+
Dokdonella323413+
Dyella231454+
Frateuria70411+
Luteibacter242605+
Rhodanobacter75309+
XanthomonadaceaePseudolysobacter2709666+
BrachyspiraceaeBrachyspira29521+
BreznakiellaceaeBreznakiella2845254++
Gracilinema2951106++
Leadbettera2951107+
SphaerochaetaceaeSphaerochaeta399320++
SpirochaetaceaeEntomospira2834378++
Sediminispirochaeta1911556+
Thiospirochaeta2792240++
TreponemataceaeBrucepastera2967962+
Treponema157++
SynergistaceaeThermanaerovibrio81461+
DesulfobacteraceaeDesulforapulum2904687+
DesulfosarcinaceaeDesulfosarcina2299+
DesulfobulbaceaeDesulfobulbus893+
DesulfocapsaceaeDesulfosediminicola2886823+
DesulfomicrobiaceaeDesulfomicrobium898+
DesulfovibrionaceaeDesulfovibrio872+
Pseudodesulfovibrio2035811+
Salidesulfovibrio2950010+
Solidesulfovibrio2910984+
DesulfuromonadaceaePelobacter18+
GeobacteraceaeTrichlorobacter115782+
SyntrophobacteraceaeSyntrophobacter29526+
PetrotogaceaeDefluviitoga1511648++
Marinitoga160798++
Oceanotoga1255275++
Petrotoga28236++
Tepiditoga2778400++
FervidobacteriaceaeFervidobacterium2422++
Thermosipho2420++
OpitutaceaeHorticoccus2986286+
Opitutus178440+
1 Genera highlighted in red are not complete according to Section 3.2.1.
Table 8. Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in selected bacterial species. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in all the genomes. Full data can be found in Table S6.
Table 8. Presence (+) or absence (−) of ushA-like (U) and cpdB-like (C) genes in selected bacterial species. The (+) background indicates: green, presence in ≤50% of the genomes analyzed; orange, presence in >50% but <100% of the genomes; red, presence in all the genomes. Full data can be found in Table S6.
Species 1TaxidUC
Acinetobacter calcoaceticus471+
Aerococcus urinae1376
Aeromonas hydrophila644++
Bacillus anthracis1392++
Bacillus cereus1396++
Bacillus subtilis1423++
Borrelia burgdorferi139
Brucella abortus235
Brucella melitensis29459
Brucella suis29461
Campylobacter jejuni197
Chlamydia abortus83555
Chlamydia muridarum83560
Chlamydia pecorum85991
Chlamydia pneumoniae83558
Chlamydia psittaci83554
Chlamydia trachomatis813
Citrobacter freundii546++
Citrobacter koseri545++
Citrobacter rodentium67825++
Clostridioides difficile1496+
Clostridium botulinum1491++
Clostridium perfringens1502++
Clostridium tetani1513+
Corynebacterium diphtheriae1717
Coxiella burnetii777
Enterobacter cloacae550++
Enterococcus avium33945++
Enterococcus faecalis1351++
Enterococcus faecium1352++
Escherichia albertii208962++
Escherichia coli562++
Escherichia fergusonii564++
Francisella tularensis263
Haemophilus influenzae727++
Haemophilus parainfluenzae729++
Hafnia alvei569++
Helicobacter pylori210+
Klebsiella aerogenes548++
Klebsiella oxytoca571++
Klebsiella pneumoniae573++
Kluyvera ascorbate51288++
Legionella pneumophila446+
Leptospiraborgpetersenii174
Leptospira interrogans173
Leptospira kirschneri29507
Leptospira noguchii28182
Leptospira santarosai28183
Leptospira weilii28184
Listeria monocytogenes1639+
Moraxella catarrhalis480
Morganella morganii582++
Mycobacterium avium1764
Mycobacterium intracellulare1767
Mycobacterium leprae1769
Mycobacterium tuberculosis1773
Mycobacterium ulcerans1809
Mycoplasma leachii2105
Mycoplasma mycoides2102
Mycoplasma putrefaciens2123
Neisseria gonorrhoeae485
Neisseria meningitidis487
Pasteurella multocida747++
Plesiomonas shigelloides703++
Proteus mirabilis584++
Proteus vulgaris585++
Providencia stuartii588++
Pseudomonas aeruginosa287
Pseudomonas fluorescens294+
Rickettsia rickettsii783
Salmonella bongori54736++
Salmonella enterica28901++
Salmonella enterica subsp. arizonae59203++
Salmonella enterica subsp. diarizonae59204++
S. enterica subsp. enterica ser. Pullorum605++
S. enterica subsp. enterica ser. Typhi90370++
S. enterica sub. enterica ser. Typhimurium90371+
Salmonella enterica subsp. houtenae59205++
Salmonella enterica subsp. salamae59202++
Salmonella enterica subsp. VII59208++
Serratia liquefaciens614++
Serratia marcescens615++
Shigella boydii621++
Shigella dysenteriae622++
Shigella flexneri623++
Shigella sonnei624++
Staphylococcus aureus1280+
Staphylococcus epidermidis1282+
Staphylococcus saprophyticus29385++
Staphylococcus warnerii 1292++
Stenotrophomonas maltophilia40324
Streptococcus agalactiae1311++
Streptococcus dysgalactiae1334++
Streptococcus mitis28037
Streptococcus mutans1309+
Streptococcus parasuis1501662++
Streptococcus pneumoniae1313
Streptococcus pyogenes1314+
Streptococcus sanguinis1305++
Streptococcus suis1307++
Streptococcus thermophilus1308++
Treponema pallidum160+
Vibrio cholerae666++
Yersinia enterocolitica630++
Yersinia intermedia631++
Yersinia pestis632++
Yersinia pseudotuberculosis633++
1 Species highlighted in red are not complete according to Section 3.2.1.
Table 9. Numbers of taxa probed, analyzed, and deemed complete after TBlastN analyses with UshA-like (U) and CpdB-like (C) probes: breakdown by kind of results obtained, with presence (+) and/or absence (−) of hits with each probe type. The data are computed from the tables indicated.
Table 9. Numbers of taxa probed, analyzed, and deemed complete after TBlastN analyses with UshA-like (U) and CpdB-like (C) probes: breakdown by kind of results obtained, with presence (+) and/or absence (−) of hits with each probe type. The data are computed from the tables indicated.
Level(Tables)Number of Taxa Probed 1Number of Taxa without Genomes 2Number of Taxa
Analyzed 3
Number of Complete Taxa 4Breakdown of Complete Taxa
by Kind of Results
U+ C+U+ C−U− C+U− C−
Phylum Table 3 and Table S1430431902314
ClassTable 4 and Table S2766703116024
OrderTable 5 and Table S3152201325344243
FamilyTable 6 and Table S4403993041397163113
GenusTable 7 and Table S5510051026813695370
SpeciesTable 8 and Table S6107010780375137
Total-1291125116659018512846231
1 Taxa that were submitted to TBlastN analysis with the seven probes. 2 Taxa that, according to TBlastN analysis, do not contain sequenced genomes in the NCBI Complete Genomes Database. 3 Taxa with sequenced genomes in the NCBI Complete Genomes Database, and that were effectively analyzed. 4 Taxa declared complete according to Section 3.2.1: in Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8, the names of non-complete taxa are written in red type.
Table 10. Complete taxa that contain both ushA-like and cpdB-like genes. No bacterial phylum showed these characteristics.
Table 10. Complete taxa that contain both ushA-like and cpdB-like genes. No bacterial phylum showed these characteristics.
ClassGenusGenus
Limnochordia1676648Kitasatospora2063Roseibium150830
OrderKluyvera579Roseicitreum1209946
Egicoccales1755823Kosakonia1330547Roseobacter2433
Kosmotogales1643946Kroppenstedtia1274351Saccharibacillus456492
Mesoaciditogales1769716Labrenzia478070Saccharospirillum231683
Nannocystales3031713Leclercia83654Scandinavium2726810
FamilyLeisingera191028Sebaldella32068
Breoghaniaceae2831104Lentilactobacillus2767893Sediminibacillus482460
Devosiaceae2831106Lentzea165301Silicimonas1955420
Kiloniellaceae597359Luteipulveratus745364Sporolactobacillus2077
Kribbellaceae2726069Mangrovibacillus2920444Stigmatella40
Moritellaceae267891Marinomonas28253Streptosporangium2000
Oleiphilaceae191033Martelella293088Sutcliffiella2837511
Thermosediminibacteraceae2770093Melittangium44Symbiopectobacterium801
GenusMetabacillus2675233Tabrizicola1443919
Acetilactobacillus2767874Methylomusa2093783Telluria34069
Actinoplanes1865Mixta2100764Tepiditoga2778400
Algicella3050722Morganella581Thalassospira168934
Alloalcanivorax3020832Neorhizobium1525371Thermosipho2420
Allobacillus1400133Nicoliella2978367Thiospirochaeta2792240
Amylolactobacillus2767876Nitratireductor245876Tissierella41273
Anaerotruncus244127Niveibacterium1769726Weizmannia2817139
Apilactobacillus2767877Obesumbacterium82982Xenorhabdus626
Aquibium2911176Occultella2828348Yersinia629
Atlantibacter1903434Oceanotoga1255275Youhaiella1827478
Basfia697331Oricola1594166Species
Bisgaardia109471Otariodibacter1249016Aeromonas hydrophila644
Breznakiella2845254Pacificitalea2846749Bacillus anthracis1392
Carboxydothermus129957Paenacidovorax3051138Bacillus cereus1396
Cedecea158483Paenalkalicoccus2944627Citrobacter freundii546
Celeribacter875170Pannonibacter227873Citrobacter koseri545
Chania1745211Paracidovorax3051137Citrobacter rodentium67825
Ciceribacter1648508Paradevosia1573407Enterobacter cloacae550
Citrobacter544Paraliobacillus200903Escherichia albertii208962
Cobetia204286Parasedimentitalea2738399Escherichia fergusonii564
Cronobacter413496Parashewanella2547964Haemophilus influenzae727
Cystobacter42Paroceanicella2683599H. parainfluenzae729
Cytobacillus2675230Pelagibacterium1082930Hafnia alvei569
Defluviitoga1511648Pelagovum2795377Klebsiella aerogenes548
Dickeya204037Periweissella2930384Klebsiella oxytoca571
Dinoroseobacter309512Peterkaempfera2995704Kluyvera ascorbata51288
Duganella75654Peteryoungia2853332Morganella morganii582
Entomospira2834378Petrocella2603323Proteus mirabilis584
Falsihalocynthiibacter2854182Petrotoga28236Proteus vulgaris585
Flavonifractor946234Phaeobacter302485Salmonella bongori54736
Frederiksenia1649317Photorhabdus29487S. enterica subsp. arizonae59203
Frigidibacter1775705Polyangium55S. enterica subsp. diarizonae59204
Fructilactobacillus2767881Polycladomyces1348505S. enterica subsp. enterica ser. Pullorum605
Fructobacillus559173Pontivivens1844015S. enterica subsp. enterica ser. Typhi90370
Georhizobium2661800Priestia2800373S. enterica subsp. houtenae59205
Gilliamella1193503Proteus583S. enterica subsp. salamae59202
Gracilibacillus74385Pseudocitrobacter1504576S. enterica subsp. VII59208
Gracilinema2951106Pseudoduganella1522432Serratia liquefaciens614
Granulosicoccus437504Pseudooceanicola1679449Shigella boydii621
Gymnodinialimonas2937410Pseudopuniceibacterium2613960Shigella dysenteriae622
Gynuella1445504Pseudorhizobium1903858Shigella flexneri623
Halobacteroides42417Psychrobacillus1221880Shigella sonnei624
Hafnia568Pukyongiella2831925Streptococcus sanguinis1305
Halocella46466Qingshengfaniella2816884Streptococcus thermophilus1308
Inhella644355Radiobacillus2785518Yersinia enterocolitica630
Intrasporangium53357Rhodobaca119541Yersinia intermedia631
Iocasia2899804Rhodovulum34008Yersinia pestis632
Jejubacter2815296Roseibacterium159345Yersinia pseudotuberculosis633
Table 11. Complete taxa that do not contain ushA-like or cpdB-like genes. No complete genus showed these characteristics.
Table 11. Complete taxa that do not contain ushA-like or cpdB-like genes. No complete genus showed these characteristics.
PhylumOrderFamily
Abditibacteriota2109258Synechococcales1890424Paludibacteraceae2005523
Acidobacteriota57723Thermoleophilales588674Parvibaculaceae2813035
Aquificota200783Thermostichales2881383Peptococcaceae186807
Bdellovibrionota3018035Trueperales2762275Peptoniphilaceae1570339
Chlamydiota204428FamilyPhreatobacteraceae2843305
Chlorobiota1090Acetomicrobiaceae3029086Porticoccaceae1706374
Chrysiogenota200938Acidilutibacteraceae2992717Proteinivoraceae1491775
Elusimicrobiota74152Acidimicrobiaceae84994Rhodospirillaceae41295
Kiritimatiellota134625Aminobacteriaceae3029087Rikenellaceae171550
Lentisphaerota256845Amorphaceae2685818Rivulariaceae1185
Nitrospinota1293497Anaeromyxobacteraceae1524215Salinivirgaceae1970190
Planctomycetota203682Aphanizomenonaceae1892259Sandaracinaceae1055686
Rhodothermota1853220Aristaeellaceae3046368Segniliparaceae316606
Thermomicrobiota3027942Bartonellaceae772Stellaceae2844601
ClassBeijerinckiaceae45404Steroidobacteraceae2689614
Acidithiobacillia1807140Beutenbergiaceae125316Sterolibacteriaceae2008793
Anaerolineae292625Blastochloridaceae2831090Succinivibrionaceae83763
Armatimonadia1042312Borreliaceae1643685Sulfuricellaceae2772226
Caldilineae475962Bruguierivoracaceae2812006Sulfurimonadaceae2771471
Chitinophagia1853228Calditerrivibrionaceae2945021Sulfurospirillaceae2932623
Coriobacteriia84998Cardiobacteriaceae868Sulfurovaceae2771472
Cytophagia768503Cellulomonadaceae85016Symbiobacteriaceae543349
Desulfarculia3031646Cellulosilyticaceae3018741Syntrophomonadaceae68298
Desulfobaccia3031647Chelatococcaceae2036754Syntrophotaleaceae2812024
Desulfurellia3031853Christensenellaceae990719Tenuifilaceae2760872
Fibrobacteria204430Coleofasciculaceae1892251Tepidanaerobacteraceae2770092
Flavobacteriia117743Coprobacillaceae2810280Terasakiellaceae2813951
Hydrogenophilalia2008785Coxiellaceae118968Thalassobaculaceae2844864
Ktedonobacteria388447Deferribacteraceae191394Thermincolaceae2937911
Longimicrobiia1804991Demequinaceae1042322Thermodesulfobacteriaceae188711
Methylacidiphilae1955630Desulfallaceae2867375Thermodesulfobiaceae227387
Mycoplasmoidales2790996Desulfococcaceae2931039Thermovirgaceae3029089
Saprospiria1937959Desulfohalobiaceae213117Thioalkalibacteraceae2035710
Spartobacteria134549Desulfolunaceae3031622Thioalkalispiraceae1096778
Sphingobacteriia117747Desulfosudaceae2904715Tolypothrichaceae119859
Tepidiformia2682225Desulfotomaculaceae2937910Tropherymataceae2805591
Thermodesulfovibrionia2811502Dethiosulfovibrionaceae3029088Wenzhouxiangellaceae1676141
Verrucomicrobiae203494Dietziaceae85029Woeseiaceae1738654
Zetaproteobacteria580370Dysgonomonadaceae2005520Xanthobacteraceae335928
OrderFastidiosibacteraceae2056687Zymomonadaceae2844881
Acholeplasmatales186329Fimbriimonadaceae1663426Species
Acidaminococcales1843488Flexistipitaceae2945022Aerococcus urinae1376
Acidiferrobacterales1692040Fluviibacteraceae2808923Borrelia burgdorferi139
Acidothermales1643683Francisellaceae34064Brucella abortus235
Actinopolysporales622450Gallionellaceae90627Brucella melitensis29459
Bifidobacteriales85004Geminicoccaceae2066434Brucella suis29461
Brevinematales1643687Geoalkalibacteraceae3031665Campylobacter jejuni197
Catenulisporales414714Gomontiellaceae1892255Chlamydia abortus83555
Caulobacterales204458Gordoniaceae85026Chlamydia muridarum83560
Chroococcidiopsidales1890505Halarsenatibacteraceae3046411Chlamydia pecorum85991
Chroococcales1118Halieaceae1706372Chlamydia pneumoniae83558
Dehalococcoidales1202465Halothermotrichaceae3046412Chlamydia psittaci83554
Dehalogenimonas670486Halothiobacillaceae255526Chlamydia trachomatis813
Egibacterales1747768Hapalosiphonaceae1892263Corynebacterium diphtheriae1717
Emcibacterales2066490Heliobacteriaceae31984Coxiella burnetiid777
Entomoplasmatales186328Hoyosellaceae3040680Francisella tularensis263
Euzebyales908621Hydrogenimonadaceae292630Leptospira borgpetersenii174
Ferrovales1442155Hyphomicrobiaceae45401Leptospira interrogans173
Frankiales85013Iamiaceae633392Leptospira kirschneri29507
Gloeobacterales307595Jonesiaceae85022Leptospira noguchii28182
Holosporales1921002Kaistiaceae2831111Leptospira santarosai28183
Kangiellales2887327Labilitrichaceae1524216Leptospira weilii28184
Koleobacterales2786987Lawsonellaceae2805586Moraxella catarrhalis480
Kordiimonadales362534Lichenihabitantaceae2723775Mycobacterium avium1764
Leptospirales1643688Litorivicinaceae449732Mycobacterium intracellulare1767
Magnetococcales1191478Maliibacteriaceae3047432Mycobacterium leprae1769
Maricaulales2800059Marinobacteraceae2887365Mycobacterium tuberculosis1773
Marinilabiliales1970189Melioribacteraceae1334117Mycobacterium ulcerans1809
Minwuiales2493627Methylocystaceae31993Mycoplasma leachii2105
Moorellales3039167Methylophilaceae32011Mycoplasma mycoides2102
Nakamurellales1643684Methylothermaceae1486721Mycoplasma putrefaciens2123
Natranaerobiales485256Mucispirillaceae2945020Neisseria gonorrhoeae485
Parvularculales255473Mycobacteriaceae1762Neisseria meningitidis487
Pleurocapsales52604Nitratiruptoraceae2795691Pseudomonas aeruginosa287
Pseudanabaenales2881377Nitrosomonadaceae206379Rickettsia rickettsii783
Puniceicoccales415001Nocardiopsaceae83676Stenotrophomonas maltophilia40324
Rickettsiales766Nostocaceae1162Streptococcus mitis28037
Sneathiellales510684Oscillatoriaceae1892254Streptococcus pneumoniae1313
Solirubrobacterales588673
Table 12. Complete taxa that contain ushA-like but not cpdB-like genes.
Table 12. Complete taxa that contain ushA-like but not cpdB-like genes.
PhylumGenusGenus
Atribacterota67818Beggiatoa1021Pelagerythrobacter2800685
Caldisericota67814Brucepastera2967962Pelobacter18
ClassCaldichromatium2828366Phytohabitans907364
Chloroflexia32061Chitinimonas240411Planktothrix54304
Chthonomonadetes1077257Chitinolyticbacter1055692Polymorphum991903
Desulfomonilia3031650Chondromyces50Pseudochrobactrum354349
Dictyoglomia203486Clostridioides1870884Pseudoleptotrichia2755140
Syntrophia3031648Companilactobacillus2767879Pullulanibacillus475230
Thermoflexia1495646Conchiformibius334107Reinekea230494
OrderCroceicoccus1295327Rhodopseudomonas1073
Bradymonadales1779134Deefgea400947Roseitalea1915401
Gloeomargaritales1955042Dermatophilus1862Salaquimonas2712688
Glycomycetales85014Desulforapulum2904687Salidesulfovibrio2950010
Immundisolibacterales1934945Edwardsiella635Salimicrobium351195
FamilyEffusibacillus1502725Saliniradius2661818
Aminithiophilaceae3029085Ephemeroptericola2680021Salinispora168694
Desulfatibacillaceae3031627Ferribacterium88875Sediminispirochaeta1911556
Elioraeaceae2690195Fervidibacillus3033930Serinicoccus265976
Geovibrionaceae2945019Geodermatophilus1860Shimwellia1335483
Gottschalkiaceae2042895Geosporobacter390805Solidesulfovibrio2910984
Hahellaceae224379Gibbsiella929812Solimonas413435
Ilumatobacteraceae2448023Gudongella2692382Spongiibacter630749
Kytococcaceae2805426Halalkalibacter2893056Staphylospora2689589
Listeriaceae186820Hathewaya1769729Stappia152161
Pleomorphomonadaceae2843308Hydrocarboniclastica2650549Suicoccus2689587
Tepidimicrobiaceae2992719Ideonella36862Syntrophobacter29526
Thermodesulfatatoraceae3031464Jeotgalibacillus157226Tetragenococcus51668
Thermohalobacteraceae2848916Jiella1775688Thermanaerovibrio81461
Thermotogaceae188709Kibdelosporangium2029Thermobacillus76632
Usitatibacteraceae2803844Leadbettera2951107Thermobispora147067
Zooshikellaceae2898533Lederbergia2804231Thermochromatium85073
GenusLitorilituus1407056Thermus270
Aceticella3051499Marichromatium85076Thiocapsa1056
Acetoanaerobium186831Meiothermus2747271Thiocystis13724
Actinosynnema40566Methylocaldum73778Trichlorobacter115782
Aliamphritea3018276Methylococcus413Tsuneonella2800686
Allochromatium85072Methylomagnum1760987Tumebacillus432330
Allomeiothermus2935559Modestobacter88138Zophobihabitans2894762
Amphibacillus29331Nitrogeniibacter2891294Zymobacter33073
Anaeropeptidivorans2997360Nosocomiicoccus489909Species
Arsenicicoccus267408Novibacillus1677050Clostridioides difficile1496
Aurantimonas182269Oceanithermus208447Staphylococcus epidermidis1282
Austwickia1184606Odoribacter283168Streptococcus mutans1309
Barnesiella397864Parageobacillus1906945Streptococcus pyogenes1314
Treponema pallidum160
Table 13. Complete taxa that contain cpdB-like but not ushA-like genes. There was no bacterial class showing these characteristics.
Table 13. Complete taxa that contain cpdB-like but not ushA-like genes. There was no bacterial class showing these characteristics.
PhylumGenusGenus
Balneolota1936987Dokdonella323413Profundibacter2778525
Calditrichota1930617Duncaniella2518495Pseudolysobacter2709666
Coprothermobacterota2138240Dyella231454Pseudoprevotella2884814
OrderFlaviflexus1522056Pseudorhodobacter238783
Haliangiales3031714Frateuria70411Rhodanobacter75309
Sporichthyales2495578Frischella1335631Rouxiella1565532
FamilyGemmatimonas173479Saccharophagus316625
Ignatzschineriaceae3018589Herbinix1663717Simonsiella71
Ignavibacteriaceae795749Horticoccus2986286Sodaliphilus2815786
Vulgatibacteraceae1524213Kineococcus33981Streptantibioticus2995706
GenusLichenicola2804525Tetrasphaera99479
Actinocatenispora390988Luteibacter242605Thioclava285107
Aerosticca2707020Marinagarivorans1792291Tyzzerella1506577
Anaeromicropila3024823Muribaculum1918540Wielerella2944815
Aquirhabdus2824158Neotabrizicola2946607Species
Caldanaerobacter249529Opitutus178440Clostridium tetani1513
Dermabacter36739Pragia82984
Table 14. Specicity of probe O32133 for the phylum Bacillota. Comparison between results obtained by querying type-material genomes of the phylum Bacillota and of Superkingdom Bacteria excluding Bacillota.
Table 14. Specicity of probe O32133 for the phylum Bacillota. Comparison between results obtained by querying type-material genomes of the phylum Bacillota and of Superkingdom Bacteria excluding Bacillota.
Phylum Bacillota (Taxid:1239)
(705 Type-Material Genomes)
Superkingdom Bacteria (Taxid:2)
Excluding Phylum Bacillota (Taxid:1239)
(3526 Type-Material Genomes)
Type of ProbeProbe 1HitsScore Max.Score Min.HitsScore Max.Score Min.
UshA-likeP070241202351515211099151
P44569773281513951188151
WP_000726911147904151324247151
WP_01183700894129715119213151
O321333669471710 (4) *(416) *(175) *
CpdB-likeP083312886861518131301152
AYV645431611579162581607153
1 The probes are shown in the same background color as Figure 1 and Table 1 to facilitate cross-referencing. * Numbers in parenthesis were obtained by removing the limit on type material in the TBlastN, which increased the number of genomes queried to 32,175. These four exceptional hits correspond to accession numbers CP080375.1, CP059263.1, CP051512.1, and CP074573.1.
Table 15. Specicity of probe O32133 for class Bacilli. Comparison between results obtained by querying type-material genomes of the class Bacilli and of the phylum Bacillota excluding Bacilli.
Table 15. Specicity of probe O32133 for class Bacilli. Comparison between results obtained by querying type-material genomes of the class Bacilli and of the phylum Bacillota excluding Bacilli.
Class Bacilli (Taxid:91061)
(431 Type-Material Genomes)
Phylum Bacillota (Taxid:1239)
Excluding Class Bacilli (Taxid:91061)
(274 Type-Material Genomes)
Type of ProbeProbe 1HitsScore Max.Score Min.HitsScore Max.Score Min.
UshA-likeP070249023515130230151
P44569753231512328153
WP_00072691113590418112212151
WP_01183700883129715162439154
O321333639471733199171
CpdB-likeP0833123168615157521152
AYV64543132157916254509156
1 The probes are shown in the same background color as Figure 1 and Table 1 to facilitate cross-referencing.
Table 16. E. coli complete genomes lacking either an ushA-like or a cpdB-like gene. These genomes represent a minor fraction (0.5%) of the total number of E. coli genomes in the NCBI Complete Genomes Database.
Table 16. E. coli complete genomes lacking either an ushA-like or a cpdB-like gene. These genomes represent a minor fraction (0.5%) of the total number of E. coli genomes in the NCBI Complete Genomes Database.
AccessionDescriptionushA-like Score Max.cpdB-like Score Max.
NZ_AP023205.1Escherichia coli strain TUM18781 chromosome, complete genome110088
NZ_CP128950.1Escherichia coli strain TUM2805 chromosome, complete genome110086
CP054239.1Escherichia coli strain STO_Bone7 chromosome, complete genome76973
CP061232.1Escherichia coli strain STEC639 chromosome, complete genome67871
AP027461.1Escherichia coli str. K-12 substr. MG1655 D41c DNA, complete genome871308
AP027460.1Escherichia coli str. K-12 substr. MG1655 D37c16 DNA, complete genome871308
AP027459.1Escherichia coli str. K-12 substr. MG1655 D37c146 DNA, complete genome871308
AP027458.1Escherichia coli str. K-12 substr. MG1655 D37c145 DNA, complete genome871308
AP027457.1Escherichia coli str. K-12 substr. MG1655 D37c143 DNA, complete genome871308
AP027456.1Escherichia coli str. K-12 substr. MG1655 D37c13 DNA, complete genome871308
AP027455.1Escherichia coli str. K-12 substr. MG1655 D37b DNA, complete genome871308
AP027454.1Escherichia coli str. K-12 substr. MG1655 D33b DNA, complete genome871308
AP027453.1Escherichia coli str. K-12 substr. MG1655 D33a DNA, complete genome871308
NC_011750.1Escherichia coli IAI39, complete sequence1181307
CP042982.1Escherichia coli strain NCCP 14540 chromosome, complete genome881306
CP061269.1Escherichia coli strain STEC1012 chromosome, complete genome871305
CP099173.1Escherichia coli strain RHB23-SO-C02 chromosome, complete genome871303
NZ_AP027411.1Escherichia coli strain EC521 isolate EC521 chromosome, complete genome871300
Table 17. Avian pathogenic E. coli complete genomes containing an ushA and a cpdB gene, respectively, were found with probes P07024 and P08331.
Table 17. Avian pathogenic E. coli complete genomes containing an ushA and a cpdB gene, respectively, were found with probes P07024 and P08331.
AccessionDescriptionushA-like Score Max.cpdB-like Score Max.
NC_020163.1Escherichia coli APEC O78, complete sequence11021306
NZ_CP006834.2Escherichia coli APEC O2-211 chromosome, complete genome10981308
NZ_CP006830.1Escherichia coli APEC O18 chromosome, complete genome10971308
NZ_008563.1Escherichia coli APEC O1, complete sequence10971308
NZ_CP005930.1Escherichia coli APEC IMT5155 chromosome, complete genome5921308
Table 18. P. multocida complete genomes lacking either an ushA-like or a cpdB-like gene. These genomes represent a minor fraction (3.6%) of the total number of P. multocida genomes in the NCBI Complete Genomes Database.
Table 18. P. multocida complete genomes lacking either an ushA-like or a cpdB-like gene. These genomes represent a minor fraction (3.6%) of the total number of P. multocida genomes in the NCBI Complete Genomes Database.
AccessionDescriptionushA-like Score Max.cpdB-like Score Max.
CP090521.1Pasteurella multocida strain AH09 chromosome, complete genome62898
NZ_CP038871.1Pasteurella multocida strain FCf15 chromosome, complete genome151 *847
NZ_CP084165.1Pasteurella multocida strain s4 chromosome, complete genome67851
NZ_CP020345.1Pasteurella multocida subsp. multocida strain CIRMBP-0884
chromosome, complete genome
67851
NZ_CP113522.1Pasteurella multocida strain PF13 chromosome, complete genome67851
* This score is the minimum required to compute the hit as an ushA-like gene. It is mentioned here because it is much lower than the immediately higher ushA-like score for this species (625; data for line 66 of Table S6).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Ribeiro, J.M.; Cameselle, J.C. Genomic Distribution of ushA-like Genes in Bacteria: Comparison to cpdB-like Genes. Genes 2023, 14, 1657. https://doi.org/10.3390/genes14081657

AMA Style

Ribeiro JM, Cameselle JC. Genomic Distribution of ushA-like Genes in Bacteria: Comparison to cpdB-like Genes. Genes. 2023; 14(8):1657. https://doi.org/10.3390/genes14081657

Chicago/Turabian Style

Ribeiro, João Meireles, and José Carlos Cameselle. 2023. "Genomic Distribution of ushA-like Genes in Bacteria: Comparison to cpdB-like Genes" Genes 14, no. 8: 1657. https://doi.org/10.3390/genes14081657

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop