Advanced Hydrogels: Preparation, Property and Biomedical Application (2nd Edition)

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Processing and Engineering".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 4793

Special Issue Editors


E-Mail Website
Guest Editor
Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
Interests: biolubrication; biomaterials; hydrogels
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
Interests: polymers; green chemistry; nanozyme; polysaccharide; biosensor; drug delivery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are grateful to all authors, reviewers, and readers for their responses to the first volume of our Special Issue, entitled “Advanced Hydrogels: Preparation, Property, and Biomedical Application”. You can access these articles for free via the link:

Advanced Hydrogels: Preparation, Property, and Biomedical Application (1st Edition)

Hydrogels are physically or chemically crosslinked three-dimensional networks. Due to the variety of monomer and crosslinker types, these hydrogels exhibit extraordinary properties, including high water content, porosity, and flexibility, leading to their extensive use in biomedical applications. They are of great interest in biocompatible implant devices, biosensors, drug delivery systems, wound care, and many other applications.

In the second volume of the Special Issue, we welcome original research articles, comprehensive reviews, short communications, and perspectives, with topics addressing—but not limited to—the key findings and contributions on advanced hydrogels, including preparation methods, characterization, and biomedical applications.

Prof. Dr. Weifeng Lin
Dr. Longgang Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • zwitterionic hydrogels
  • nanogels
  • composite hydrogels
  • double network hydrogels
  • antifouling
  • wound healing
  • lubrication
  • mechanical properties
  • implants

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 8092 KiB  
Article
Rheological Characterization of Three-Dimensional Neuronal Cultures Embedded in PEGylated Fibrin Hydrogels
by Clara F. López-León, Jordi Soriano and Ramon Planet
Gels 2023, 9(8), 642; https://doi.org/10.3390/gels9080642 - 09 Aug 2023
Cited by 1 | Viewed by 936
Abstract
Three-dimensional (3D) neuronal cultures are valuable models for studying brain complexity in vitro, and the choice of the bulk material in which the neurons grow is a crucial factor in establishing successful cultures. Indeed, neuronal development and network functionality are influenced by the [...] Read more.
Three-dimensional (3D) neuronal cultures are valuable models for studying brain complexity in vitro, and the choice of the bulk material in which the neurons grow is a crucial factor in establishing successful cultures. Indeed, neuronal development and network functionality are influenced by the mechanical properties of the selected material; in turn, these properties may change due to neuron–matrix interactions that alter the microstructure of the material. To advance our understanding of the interplay between neurons and their environment, here we utilized a PEGylated fibrin hydrogel as a scaffold for mouse primary neuronal cultures and carried out a rheological characterization of the scaffold over a three-week period, both with and without cells. We observed that the hydrogels exhibited an elastic response that could be described in terms of the Young’s modulus E. The hydrogels without neurons procured a stable E420 Pa, while the neuron-laden hydrogels showed a higher E590 Pa during the early stages of development that decreased to E340 Pa at maturer stages. Our results suggest that neurons and their processes dynamically modify the hydrogel structure during development, potentially compromising both the stability of the material and the functional traits of the developing neuronal network. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

21 pages, 1952 KiB  
Review
Starch-Based Hydrogels as a Drug Delivery System in Biomedical Applications
by Chung-Sung Lee and Hee Sook Hwang
Gels 2023, 9(12), 951; https://doi.org/10.3390/gels9120951 - 04 Dec 2023
Cited by 3 | Viewed by 1823
Abstract
Starch-based hydrogels have gained significant attention in biomedical applications as a type of drug delivery system due to their biocompatibility, biodegradability, and ability to absorb and release drugs. Starch-based hydrogels can serve as effective carriers for pharmaceutical compounds such as drugs and proteins [...] Read more.
Starch-based hydrogels have gained significant attention in biomedical applications as a type of drug delivery system due to their biocompatibility, biodegradability, and ability to absorb and release drugs. Starch-based hydrogels can serve as effective carriers for pharmaceutical compounds such as drugs and proteins to develop drug-loaded hydrogel systems, providing controlled release over an extended period. The porous structure of a hydrogel allows for the diffusion of drugs, ensuring sustained and localized delivery to the target site. Moreover, starch-based hydrogels have been used as a powerful option in various biomedical fields, including cancer and infectious disease treatment. In addition, starch-based hydrogels have shown promise in tissue engineering applications since hydrogels can be used as scaffolds or matrices to support cell growth and tissue regeneration. Depending on techniques such as chemical crosslinking or physical gelation, it can create a three-dimensional network structure that tunes its mechanical properties and mimics the extracellular matrix. Starch-based hydrogels can also provide a supportive environment for cell attachment, proliferation, and differentiation to promote specific cellular responses and tissue regeneration processes with the loading of growth factors, cytokines, or other bioactive molecules. In this review, starch-based hydrogels as a versatile platform for various biomedical applications are discussed. Full article
Show Figures

Figure 1

30 pages, 4210 KiB  
Review
Fluorescent-Nanoparticle-Impregnated Nanocomposite Polymeric Gels for Biosensing and Drug Delivery Applications
by Kumaraswamy Gandla, K. Praveen Kumar, P. Rajasulochana, Manoj Shrawan Charde, Ritesh Rana, Laliteshwar Pratap Singh, M. Akiful Haque, Vasudha Bakshi, Falak A. Siddiqui, Sharuk L. Khan and S. Ganguly
Gels 2023, 9(8), 669; https://doi.org/10.3390/gels9080669 - 18 Aug 2023
Cited by 3 | Viewed by 1593
Abstract
Nanocomposite polymeric gels infused with fluorescent nanoparticles have surfaced as a propitious category of substances for biomedical purposes owing to their exceptional characteristics. The aforementioned materials possess a blend of desirable characteristics, including biocompatibility, biodegradability, drug encapsulation, controlled release capabilities, and optical properties [...] Read more.
Nanocomposite polymeric gels infused with fluorescent nanoparticles have surfaced as a propitious category of substances for biomedical purposes owing to their exceptional characteristics. The aforementioned materials possess a blend of desirable characteristics, including biocompatibility, biodegradability, drug encapsulation, controlled release capabilities, and optical properties that are conducive to imaging and tracking. This paper presents a comprehensive analysis of the synthesis and characterization of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels, as well as their biomedical applications, such as drug delivery, imaging, and tissue engineering. In this discourse, we deliberate upon the merits and obstacles linked to these substances, encompassing biocompatibility, drug encapsulation, optical characteristics, and scalability. The present study aims to provide an overall evaluation of the potential of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels for biomedical applications. Additionally, emerging trends and future directions for research in this area are highlighted. Full article
Show Figures

Graphical abstract

Back to TopTop