Recent Progress and Development of Advanced Aerogels: Latest Processing Methods, Improved Properties and Application

A special issue of Gels (ISSN 2310-2861). This special issue belongs to the section "Gel Applications".

Deadline for manuscript submissions: 15 May 2024 | Viewed by 9899

Special Issue Editors

1. Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
2. Department of Surgery, Columbia University Medical Center, New York, NY, USA
Interests: polymer processing; polymer characterization; aerogel; gas-barrier films; multilayered films; biomedical device; in vitro/in vivo study; flame-retardant materials
Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
Interests: aerogels; polymer composites; polymer processing; polymer characterization; additive manufacturing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Aerogels have attracted considerable attention in recent decades due to their natural, low-toxicity features and controllable, porous structures. Based on various matrices, enhanced additives, updated processing technology, aerogel composites display optimized properties in the realms of insulation, flame retardancy, absorption, and catalysis, etc., and exhibit tremendous potential applications in aerospace, construction, electronic and medical device. In this Special Issue, we aim to summarize the progressive investigation of aerogels through the publication of studies covering inorganic, organic and hybrid substances of this kind, focusing in particular on improved properties and functionalities. We hope to collect recent findings and discover their potential for use in future applications. The submission of studies discussing the use of advanced additives, the latest processing technologies and the optimized properties of aerogels is welcome!

Dr. Mingze Sun
Dr. Tobias Abt
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Gels is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aerogel
  • processing
  • properties
  • application

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 6355 KiB  
Article
Cellulose Diacetate Aerogels with Low Drying Shrinkage, High-Efficient Thermal Insulation, and Superior Mechanical Strength
by Sizhao Zhang, Kunming Lu, Yangbiao Hu, Guangyu Xu, Jing Wang, Yanrong Liao and Shuai Yu
Gels 2024, 10(3), 210; https://doi.org/10.3390/gels10030210 - 21 Mar 2024
Viewed by 804
Abstract
The inherent characteristics of cellulose-derived aerogels, such as their natural abundance and environmental friendliness, make them highly interesting. However, its significant shrinkage before and after the supercritical drying procedure and low mechanical strength limit its potential application. Here, we propose a strategy to [...] Read more.
The inherent characteristics of cellulose-derived aerogels, such as their natural abundance and environmental friendliness, make them highly interesting. However, its significant shrinkage before and after the supercritical drying procedure and low mechanical strength limit its potential application. Here, we propose a strategy to prepare cellulose diacetate aerogels (CDAAs) with low drying shrinkage, exceptional thermal insulation, and superior mechanical strength. The low drying shrinkage (radial drying shrinkage of 1.4%) of CDAAs is attributed to their relative strong networking skeletons, which are greatly formed by tert-butanol solvent exchange in exerting the interaction of reducing the surface tension force. In this case, CDAAs are eventually endowed with the low bulk density of 0.069 g cm−3 as well. Additionally, as-prepared CDAAs possess an abundant three-dimensional networking structure whose pore size is concentrated in the diameter range of ~50 nm, and the result above is beneficial for improving the thermal insulation performance (thermal conductivity of 0.021 W m−1 K−1 at ambient environmental and pressure conditions). On the other hand, the optimal compressive stresses of CDAAs at 3% and 5% strain are 0.22 and 0.27 MPa respectively, indicating a mechanically well robustness. The above evidence demonstrates indeed the exceptional thermal insulation and superior compressive properties of CDAAs. This work may provide a new solution for developing a kind of high-performance cellulose-derived aerogel in the future. Full article
Show Figures

Graphical abstract

13 pages, 3309 KiB  
Article
A Novel, Controllable, and Efficient Method for Building Highly Hydrophobic Aerogels
by Shu-Liang Li, Yu-Tao Wang, Shi-Jun Zhang, Ming-Ze Sun, Jie Li, Li-Qiu Chu, Chen-Xi Hu, Yi-Lun Huang, Da-Li Gao and David A. Schiraldi
Gels 2024, 10(2), 121; https://doi.org/10.3390/gels10020121 - 02 Feb 2024
Viewed by 1092
Abstract
Aerogels prepared using freeze-drying methods have the potential to be insulation materials or absorbents in the fields of industry, architecture, agriculture, etc., for their low heat conductivity, high specific area, low density, degradability, and low cost. However, their native, poor water resistance caused [...] Read more.
Aerogels prepared using freeze-drying methods have the potential to be insulation materials or absorbents in the fields of industry, architecture, agriculture, etc., for their low heat conductivity, high specific area, low density, degradability, and low cost. However, their native, poor water resistance caused by the hydrophilicity of their polymer matrix limits their practical application. In this work, a novel, controllable, and efficient templating method was utilized to construct a highly hydrophobic surface for freeze-drying aerogels. The influence of templates on the macroscopic morphology and hydrophobic properties of materials was investigated in detail. This method provided the economical and rapid preparation of a water-resistant aerogel made from polyvinyl alcohol (PVA) and montmorillonite (MMT), putting forward a new direction for the research and development of new, environmentally friendly materials. Full article
Show Figures

Graphical abstract

17 pages, 8366 KiB  
Article
Meso-Microporous Carbon Nanofibrous Aerogel Electrode Material with Fluorine-Treated Wood Biochar for High-Performance Supercapacitor
by Md Faruque Hasan, Kingsford Asare, Shobha Mantripragada, Victor Charles, Abolghasem Shahbazi and Lifeng Zhang
Gels 2024, 10(1), 82; https://doi.org/10.3390/gels10010082 - 22 Jan 2024
Viewed by 1645
Abstract
A supercapacitor is an electrical energy storage system with high power output. With worldwide awareness of sustainable development, developing cost-effective, environmentally friendly, and high-performance supercapacitors is an important research direction. The use of sustainable components like wood biochar in the electrode materials for [...] Read more.
A supercapacitor is an electrical energy storage system with high power output. With worldwide awareness of sustainable development, developing cost-effective, environmentally friendly, and high-performance supercapacitors is an important research direction. The use of sustainable components like wood biochar in the electrode materials for supercapacitor uses holds great promise for sustainable supercapacitor development. In this study, we demonstrated a facile and powerful approach to prepare meso-microporous carbon electrode materials for sustainable and high-performance supercapacitor development by electrospinning polyacrylonitrile (PAN) with F-treated biochar and subsequent aerogel construction followed by stabilization, carbonization, and carbon activation. The resultant carbon nanofibrous aerogel electrode material (ENFA-FBa) exhibited exceptional specific capacitance, attributing to enormously increased micropore and mesopore volumes, much more activated sites to charge storage, and significantly greater electrochemical interaction with electrolyte. This electrode material achieved a specific capacitance of 407 F/g at current density of 0.5 A/g in 1 M H2SO4 electrolyte, which outperformed the state-of-the-art specific capacitance of biochar-containing electrospun carbon nanofibrous aerogel electrode materials (<300 F/g). A symmetric two-electrode cell with ENFA-FBa as electrode material showed an energy density of 11.2 Wh/kg at 125 W/kg power density. Even after 10,000 cycles of charging-discharging at current density of 10 A/g, the device maintained a consistent coulombic efficiency of 53.5% and an outstanding capacitance retention of 91%. Our research pointed out a promising direction to develop sustainable electrode materials for future high-performance supercapacitors. Full article
Show Figures

Figure 1

17 pages, 3641 KiB  
Article
Self-Assembled Aminated and TEMPO Cellulose Nanofibers (Am/TEMPO-CNF) Aerogel for Adsorptive Removal of Oxytetracycline and Chloramphenicol Antibiotics from Water
by Rabia Amen, Islam Elsayed, Gregory T. Schueneman and El Barbary Hassan
Gels 2024, 10(1), 77; https://doi.org/10.3390/gels10010077 - 20 Jan 2024
Viewed by 2043
Abstract
Antibiotics are used for the well-being of human beings and other animals. Detectable levels of antibiotics can be found in pharmaceutical, municipal, and animal effluents. Therefore, the treatment of antibiotic contaminated water is of great concern. In this study, we fabricated a sustainable [...] Read more.
Antibiotics are used for the well-being of human beings and other animals. Detectable levels of antibiotics can be found in pharmaceutical, municipal, and animal effluents. Therefore, the treatment of antibiotic contaminated water is of great concern. In this study, we fabricated a sustainable aminated/TEMPO cellulose nanofiber (Am/TEMPO-CNF) aerogel to remove oxytetracycline (OTC) and chloramphenicol (CAP) from synthetic wastewater. The prepared aerogel was characterized using different analytical techniques such as elemental analysis, FTIR, TGA, SEM-EDS, and N2 adsorption–desorption isotherms. The characterization techniques confirmed the presence and interaction of quaternary amine -[NR3]+ and -COOH groups on Am/TEMPO-CNF with OTC and CAP, which validates the successful modification of Am/TEMPO-CNF. The adsorption process of the pollutants was examined as a function of solution pH, concentrations, reaction time, and temperatures. The maximum adsorption capacity was 153.13 and 150.15 mg/g for OTC and CAP, respectively. The pseudo-second order (PSO-2) was well fitted to both OTC and CAP, confirming the removal is via chemisorption. Hydrogen bonding and electrostatic attraction have been postulated as key factors in facilitating OTC and CAP adsorption according to spectroscopic studies. Energetically, the adsorption was spontaneous and endothermic for both pollutants. In conclusion, the efficient removal rate and excellent reusability of Am/TEMPO-CNF indicate the strong potential of the adsorbent for antibiotics’ removal. Full article
Show Figures

Figure 1

12 pages, 1485 KiB  
Article
Uncovering Key Factors in Graphene Aerogel-Based Electrocatalysts for Sustainable Hydrogen Production: An Unsupervised Machine Learning Approach
by Emil Obeid and Khaled Younes
Gels 2024, 10(1), 57; https://doi.org/10.3390/gels10010057 - 12 Jan 2024
Viewed by 1040
Abstract
The application of principal component analysis (PCA) as an unsupervised learning method has been used in uncovering correlations among diverse features of aerogel-based electrocatalysts. This analytical approach facilitates a comprehensive exploration of catalytic activity, revealing intricate relationships with various physical and electrochemical properties. [...] Read more.
The application of principal component analysis (PCA) as an unsupervised learning method has been used in uncovering correlations among diverse features of aerogel-based electrocatalysts. This analytical approach facilitates a comprehensive exploration of catalytic activity, revealing intricate relationships with various physical and electrochemical properties. The first two principal components (PCs), collectively capturing nearly 70% of the total variance, attested the reliability and efficacy of PCA in unveiling meaningful patterns. This study challenges the conventional understanding that a material’s reactivity is solely dictated by the quantity of catalyst loaded. Instead, it unveils a complex perspective, highlighting that reactivity is intricately influenced by the material’s overall design and structure. The PCA bi-plot uncovers correlations between pH and Tafel slope, suggesting an interdependence between these variables and providing valuable insights into the complex interactions among physical and electrochemical properties. Tafel slope stands to be positively correlated with PC1 and PC2, showing an evident positive correlation with the pH. These findings showed that the pH can have a positive correlation with the Tafel slope, however, it does not necessarily reflect a direct positive correlation with the overpotential. The impact of pH on current density (j)and Tafel slope underscores the importance of adjusting pH to lower overpotential effectively, enhancing catalytic activity. Surface area (from 30 to 533 m2 g−1) emerges as a key physical property, inclusively inverse correlation with overpotential, indicating its direct role in lowering overpotential and increasing catalytic activity. The introduction of PC3, in conjunction with PC1, enriches the analysis by revealing consistent trends despite a slightly lower variance (60%). This reinforces the robustness of PCA in delineating distinct characteristics of graphene aerogels, affirming their potential implications in diverse electrocatalytic applications. In summary, PCA proves to be a valuable tool for unraveling complex relationships within aerogel-based electrocatalysts, extending insights beyond catalytic sites to emphasize the broader spectrum of material properties. This approach enhances comprehension of dataset intricacies and holds promise for guiding the development of more effective and versatile electrocatalytic materials. Full article
Show Figures

Figure 1

19 pages, 2663 KiB  
Article
Sustainable Tannin Gels for the Efficient Removal of Metal Ions and Organic Dyes
by Ann-Kathrin Koopmann, Caroline Ramona Ehgartner, Daniel Euchler, Martha Claros and Nicola Huesing
Gels 2023, 9(10), 822; https://doi.org/10.3390/gels9100822 - 17 Oct 2023
Viewed by 1344
Abstract
The usage of a highly efficient, low-cost, and sustainable adsorbent material as an industrial wastewater treatment technique is required. Herein, the usage of the novel, fully sustainable tannin-5-(hydroxymethyl)furfural (TH) aerogels, generated via a water-based sol–gel process, as compatible biosorbent materials is presented. In [...] Read more.
The usage of a highly efficient, low-cost, and sustainable adsorbent material as an industrial wastewater treatment technique is required. Herein, the usage of the novel, fully sustainable tannin-5-(hydroxymethyl)furfural (TH) aerogels, generated via a water-based sol–gel process, as compatible biosorbent materials is presented. In particular, this study focusses on the surface modification of the tannin biosorbent with carboxyl or amino functional groups, which, hence, alters the accessible adsorption sites, resulting in increased adsorption capacity, as well as investigating the optimal pH conditions for the adsorption process. Precisely, highest adsorption capacities are acquired for the metal cations and cationic dye in an alkaline aqueous environment using a carboxyl-functionalized tannin biosorbent, whereas the anionic dye requires an acidic environment using an amino-functionalized tannin biosorbent. Under these determined optimal conditions, the maximum monolayer adsorption capacity of the tannin biosorbent ensues in the following order: Cu2+ > RB > Zn2+ > MO, with 500, 244, 192, 131 mg g−1, respectively, indicating comparable or even superior adsorption capacities compared to conventional activated carbons or silica adsorbents. Thus, these functionalized, fully sustainable, inexpensive tannin biosorbent materials, that feature high porosity and high specific surface areas, are ideal industrial candidates for the versatile adsorption process from contaminated (heavy) metal or dye solutions. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

24 pages, 2950 KiB  
Review
Enhancing Photocatalytic Properties of TiO2 Photocatalyst and Heterojunctions: A Comprehensive Review of the Impact of Biphasic Systems in Aerogels and Xerogels Synthesis, Methods, and Mechanisms for Environmental Applications
by Lizeth Katherine Tinoco Navarro and Cihlar Jaroslav
Gels 2023, 9(12), 976; https://doi.org/10.3390/gels9120976 - 13 Dec 2023
Cited by 5 | Viewed by 1424
Abstract
This review provides a detailed exploration of titanium dioxide (TiO2) photocatalysts, emphasizing structural phases, heterophase junctions, and their impact on efficiency. Key points include diverse synthesis methods, with a focus on the sol-gel route and variants like low-temperature hydrothermal synthesis (LTHT). [...] Read more.
This review provides a detailed exploration of titanium dioxide (TiO2) photocatalysts, emphasizing structural phases, heterophase junctions, and their impact on efficiency. Key points include diverse synthesis methods, with a focus on the sol-gel route and variants like low-temperature hydrothermal synthesis (LTHT). The review delves into the influence of acid-base donors on gelation, dissects crucial drying techniques for TiO2 aerogel or xerogel catalysts, and meticulously examines mechanisms underlying photocatalytic activity. It highlights the role of physicochemical properties in charge diffusion, carrier recombination, and the impact of scavengers in photo-oxidation/reduction. Additionally, TiO2 doping techniques and heterostructures and their potential for enhancing efficiency are briefly discussed, all within the context of environmental applications. Full article
Show Figures

Graphical abstract

Back to TopTop