entropy-logo

Journal Browser

Journal Browser

Advances in Applied Thermodynamics II

A special issue of Entropy (ISSN 1099-4300). This special issue belongs to the section "Thermodynamics".

Deadline for manuscript submissions: closed (30 November 2016) | Viewed by 97467

Special Issue Editor


E-Mail Website
Guest Editor
NewRail - Newcastle Centre for Railway Research, Newcastle University, Newcastle upon Tyne NE17RU, UK
Interests: thermal power systems; refrigeration; combined cycles; internal combustion engines; finite time thermodynamics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

You are invited to submit papers to the Special Issue, “Advances in Thermodynamics II”, focusing on the application of the Second Law of Thermodynamics to processes in several fields of study.

The concept of entropy originated in the period when thermodynamics was concerned with the conditions under which heat can be converted to work. It was formalized and named (from the Greek εντροπία, transformation) by Rudolf Clausius from considerations of reversible processes. Usually, today, an irreversible transformation is identified by the Clausius Inequality. In his later work, Clausius included irreversible process to derive the Second Law of Thermodynamics as an equality, and included a term to account for entropy generation by dissipative processes. A more generalized formulation of the entropy concept, developed by Boltzmann, is associated with disorder or the destruction of the coherence of an initial state. This has been widely adopted in many diverse fields of study including chemistry, biology, cosmology and information science. An indication of the importance of the Second Law of Thermodynamics can be gauged by the following statement made by Sir Arthur Eddington, "If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equations—then so much the worse for Maxwell's equations. If it is found to be contradicted by observation—well, these experimentalists do bungle things sometimes. But if your theory is found to be against the Second Law of Thermodynamics I can offer you no hope". The Second Law played a key role in the development of Classical Thermodynamics in the 20th century with entropy revealing some essential characteristics of the behavior of matter and energy. In moving away from equilibrium states and adopting mathematical techniques from other branches of science, the analysis of Carnot has been extended to include thermodynamic systems with fixed rates or durations and constraints on heat or mass transfer surfaces. This exciting development has established the conditions appropriate to time or rate constrained processes and the conditions for optimal configurations of heat and mass exchange processes. It is clear that such techniques will play an important part in many fields of activity that are important today. Papers will be welcome from a wide range of disciplines that are based upon the application of the Second Law of Thermodynamics.

Prof. Dr. Brian Agnew
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Entropy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Second Law of Thermodynamics
  • Entropy generation minimization
  • Optimization

Related Special Issue

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

1095 KiB  
Article
A LiBr-H2O Absorption Refrigerator Incorporating a Thermally Activated Solution Pumping Mechanism
by Ian W. Eames
Entropy 2017, 19(3), 90; https://doi.org/10.3390/e19030090 - 26 Feb 2017
Cited by 5 | Viewed by 7190
Abstract
This paper provides an illustrated description of a proposed LiBr-H2O vapour absorption refrigerator which uses a thermally activated solution pumping mechanism that combines controlled variations in generator vapour pressure with changes it produces in static-head pressure difference to circulate the absorbent [...] Read more.
This paper provides an illustrated description of a proposed LiBr-H2O vapour absorption refrigerator which uses a thermally activated solution pumping mechanism that combines controlled variations in generator vapour pressure with changes it produces in static-head pressure difference to circulate the absorbent solution between the generator and absorber vessels. The proposed system is different and potentially more efficient than a bubble pump system previously proposed and avoids the need for an electrically powered circulation pump found in most conventional LiBr absorption refrigerators. The paper goes on to provide a sample set of calculations that show that the coefficient of performance values of the proposed cycle are similar to those found for conventional cycles. The theoretical results compare favourably with some preliminary experimental results, which are also presented for the first time in this paper. The paper ends by proposing an outline design for an innovative steam valve, which is a key component needed to control the solution pumping mechanism. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics II)
Show Figures

Figure 1

12388 KiB  
Article
Response Surface Methodology Control Rod Position Optimization of a Pressurized Water Reactor Core Considering Both High Safety and Low Energy Dissipation
by Yi-Ning Zhang, Hao-Chun Zhang, Hai-Yan Yu and Chao Ma
Entropy 2017, 19(2), 63; https://doi.org/10.3390/e19020063 - 10 Feb 2017
Cited by 5 | Viewed by 5154
Abstract
Response Surface Methodology (RSM) is introduced to optimize the control rod positions in a pressurized water reactor (PWR) core. The widely used 3D-IAEA benchmark problem is selected as the typical PWR core and the neutron flux field is solved. Besides, some additional thermal [...] Read more.
Response Surface Methodology (RSM) is introduced to optimize the control rod positions in a pressurized water reactor (PWR) core. The widely used 3D-IAEA benchmark problem is selected as the typical PWR core and the neutron flux field is solved. Besides, some additional thermal parameters are assumed to obtain the temperature distribution. Then the total and local entropy production is calculated to evaluate the energy dissipation. Using RSM, three directions of optimization are taken, which aim to determine the minimum of power peak factor Pmax, peak temperature Tmax and total entropy production Stot. These parameters reflect the safety and energy dissipation in the core. Finally, an optimization scheme was obtained, which reduced Pmax, Tmax and Stot by 23%, 8.7% and 16%, respectively. The optimization results are satisfactory. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics II)
Show Figures

Graphical abstract

335 KiB  
Article
Scaling Relations of Lognormal Type Growth Process with an Extremal Principle of Entropy
by Zi-Niu Wu, Juan Li and Chen-Yuan Bai
Entropy 2017, 19(2), 56; https://doi.org/10.3390/e19020056 - 27 Jan 2017
Cited by 5 | Viewed by 6710
Abstract
The scale, inflexion point and maximum point are important scaling parameters for studying growth phenomena with a size following the lognormal function. The width of the size function and its entropy depend on the scale parameter (or the standard deviation) and measure the [...] Read more.
The scale, inflexion point and maximum point are important scaling parameters for studying growth phenomena with a size following the lognormal function. The width of the size function and its entropy depend on the scale parameter (or the standard deviation) and measure the relative importance of production and dissipation involved in the growth process. The Shannon entropy increases monotonically with the scale parameter, but the slope has a minimum at p 6/6. This value has been used previously to study spreading of spray and epidemical cases. In this paper, this approach of minimizing this entropy slope is discussed in a broader sense and applied to obtain the relationship between the inflexion point and maximum point. It is shown that this relationship is determined by the base of natural logarithm e ' 2.718 and exhibits some geometrical similarity to the minimal surface energy principle. The known data from a number of problems, including the swirling rate of the bathtub vortex, more data of droplet splashing, population growth, distribution of strokes in Chinese language characters and velocity profile of a turbulent jet, are used to assess to what extent the approach of minimizing the entropy slope can be regarded as useful. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics II)
Show Figures

Figure 1

29008 KiB  
Article
Similarity Theory Based Radial Turbine Performance and Loss Mechanism Comparison between R245fa and Air for Heavy-Duty Diesel Engine Organic Rankine Cycles
by Lei Zhang, Weilin Zhuge, Yangjun Zhang and Tao Chen
Entropy 2017, 19(1), 25; https://doi.org/10.3390/e19010025 - 14 Jan 2017
Cited by 12 | Viewed by 7291
Abstract
Organic Rankine Cycles using radial turbines as expanders are considered as one of the most efficient technologies to convert heavy-duty diesel engine waste heat into useful work. Turbine similarity design based on the existing air turbine profiles is time saving. Due to totally [...] Read more.
Organic Rankine Cycles using radial turbines as expanders are considered as one of the most efficient technologies to convert heavy-duty diesel engine waste heat into useful work. Turbine similarity design based on the existing air turbine profiles is time saving. Due to totally different thermodynamic properties between organic fluids and air, its influence on turbine performance and loss mechanisms need to be analyzed. This paper numerically simulated a radial turbine under similar conditions between R245fa and air, and compared the differences of the turbine performance and loss mechanisms. Larger specific heat ratio of air leads to air turbine operating at higher pressure ratios. As R245fa gas constant is only about one-fifth of air gas constant, reduced rotating speeds of R245fa turbine are only 0.4-fold of those of air turbine, and reduced mass flow rates are about twice of those of air turbine. When using R245fa as working fluid, the nozzle shock wave losses decrease but rotor suction surface separation vortex losses increase, and eventually leads that isentropic efficiencies of R245fa turbine in the commonly used velocity ratio range from 0.5 to 0.9 are 3%–4% lower than those of air turbine. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics II)
Show Figures

Figure 1

1977 KiB  
Article
Entropy Generation in Magnetohydrodynamic Mixed Convection Flow over an Inclined Stretching Sheet
by Muhammad Idrees Afridi, Muhammad Qasim, Ilyas Khan, Sharidan Shafie and Ali Saleh Alshomrani
Entropy 2017, 19(1), 10; https://doi.org/10.3390/e19010010 - 28 Dec 2016
Cited by 42 | Viewed by 6739
Abstract
This research focuses on entropy generation rate per unit volume in magneto-hydrodynamic (MHD) mixed convection boundary layer flow of a viscous fluid over an inclined stretching sheet. Analysis has been performed in the presence of viscous dissipation and non-isothermal boundary conditions. The governing [...] Read more.
This research focuses on entropy generation rate per unit volume in magneto-hydrodynamic (MHD) mixed convection boundary layer flow of a viscous fluid over an inclined stretching sheet. Analysis has been performed in the presence of viscous dissipation and non-isothermal boundary conditions. The governing boundary layer equations are transformed into ordinary differential equations by an appropriate similarity transformation. The transformed coupled nonlinear ordinary differential equations are then solved numerically by a shooting technique along with the Runge-Kutta method. Expressions for entropy generation (Ns) and Bejan number (Be) in the form of dimensionless variables are also obtained. Impact of various physical parameters on the quantities of interest is seen. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics II)
Show Figures

Figure 1

2182 KiB  
Article
Numerical Study of Entropy Generation in Mixed MHD Convection in a Square Lid-Driven Cavity Filled with Darcy–Brinkman–Forchheimer Porous Medium
by Rahma Bouabda, Mounir Bouabid, Ammar Ben Brahim and Mourad Magherbi
Entropy 2016, 18(12), 436; https://doi.org/10.3390/e18120436 - 06 Dec 2016
Cited by 6 | Viewed by 4723
Abstract
This investigation deals with the numerical simulation of entropy generation at mixed convection flow in a lid-driven saturated porous cavity submitted to a magnetic field. The magnetic field is applied in the direction that is normal to the cavity cross section. The governing [...] Read more.
This investigation deals with the numerical simulation of entropy generation at mixed convection flow in a lid-driven saturated porous cavity submitted to a magnetic field. The magnetic field is applied in the direction that is normal to the cavity cross section. The governing equations, written in the Darcy–Brinkman–Forchheimer formulation, are solved using a numerical code based on the Control Volume Finite Element Method. The flow structure and heat transfer are presented in the form of streamlines, isotherms and average Nusselt number. The entropy generation was studied for various values of Darcy number (10−3 ≤ Da ≤ 1) and for a range of Hartmann number (0 ≤ Ha ≤ 102). It was found that entropy generation is affected by the variations of the considered dimensionless physical parameters. Moreover, the form drag related to the Forchheimer effect remains significant until a critical Hartmann number value. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics II)
Show Figures

Figure 1

1201 KiB  
Article
Energy Efficiency Improvement in a Modified Ethanol Process from Acetic Acid
by Young Han Kim
Entropy 2016, 18(12), 422; https://doi.org/10.3390/e18120422 - 24 Nov 2016
Cited by 2 | Viewed by 7994
Abstract
For the high utilization of abundant lignocellulose, which is difficult to directly convert into ethanol, an energy-efficient ethanol production process using acetic acid was examined, and its energy saving performance, economics, and thermodynamic efficiency were compared with the conventional process. The raw ethanol [...] Read more.
For the high utilization of abundant lignocellulose, which is difficult to directly convert into ethanol, an energy-efficient ethanol production process using acetic acid was examined, and its energy saving performance, economics, and thermodynamic efficiency were compared with the conventional process. The raw ethanol synthesized from acetic acid and hydrogen was fed to the proposed ethanol concentration process. The proposed process utilized an extended divided wall column (DWC), for which the performance was investigated with the HYSYS simulation. The performance improvement of the proposed process includes a 27% saving in heating duty and a 41% reduction in cooling duty. The economics shows a 16% saving in investment cost and a 24% decrease in utility cost over the conventional ethanol concentration process. The exergy analysis shows a 9.6% improvement in thermodynamic efficiency for the proposed process. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics II)
Show Figures

Figure 1

234 KiB  
Article
On Thermodynamics Problems in the Single-Phase-Lagging Heat Conduction Model
by Shu-Nan Li and Bing-Yang Cao
Entropy 2016, 18(11), 391; https://doi.org/10.3390/e18110391 - 09 Nov 2016
Cited by 3 | Viewed by 4073
Abstract
Thermodynamics problems for the single-phase-lagging (SPL) model have not been much studied. In this paper, the violation of the second law of thermodynamics by the SPL model is studied from two perspectives, which are the negative entropy production rate and breaking equilibrium spontaneously. [...] Read more.
Thermodynamics problems for the single-phase-lagging (SPL) model have not been much studied. In this paper, the violation of the second law of thermodynamics by the SPL model is studied from two perspectives, which are the negative entropy production rate and breaking equilibrium spontaneously. The methods for the SPL model to avoid the negative entropy production rate are proposed, which are extended irreversible thermodynamics and the thermal relaxation time. Modifying the entropy production rate positive or zero is not enough to avoid the violation of the second law of thermodynamics for the SPL model, because the SPL model could cause breaking equilibrium spontaneously in some special circumstances. As comparison, it is shown that Fourier’s law and the CV model cannot break equilibrium spontaneously by analyzing mathematical energy integral. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics II)
4063 KiB  
Article
Analysis of Entropy Generation in Mixed Convective Peristaltic Flow of Nanofluid
by Tasawar Hayat, Sadaf Nawaz, Ahmed Alsaedi and Maimona Rafiq
Entropy 2016, 18(10), 355; https://doi.org/10.3390/e18100355 - 30 Sep 2016
Cited by 17 | Viewed by 5799
Abstract
This article examines entropy generation in the peristaltic transport of nanofluid in a channel with flexible walls. Single walled carbon nanotubes (SWCNT) and multiple walled carbon nanotubes (MWCNT) with water as base fluid are utilized in this study. Mixed convection is also considered [...] Read more.
This article examines entropy generation in the peristaltic transport of nanofluid in a channel with flexible walls. Single walled carbon nanotubes (SWCNT) and multiple walled carbon nanotubes (MWCNT) with water as base fluid are utilized in this study. Mixed convection is also considered in the present analysis. Viscous dissipation effect is present. Moreover, slip conditions are encountered for both velocity and temperature at the boundaries. Analysis is prepared in the presence of long wavelength and small Reynolds number assumptions. Two phase model for nanofluids are employed. Nonlinear system of equations for small Grashof number is solved. Velocity and temperature are examined for different parameters via graphs. Streamlines are also constructed to analyze the trapping. Results show that axial velocity and temperature of the nanofluid decrease when we enhance the nanoparticle volume fraction. Moreover, the wall elastance parameter shows increase in axial velocity and temperature, whereas decrease in both quantities is noticed for damping coefficient. Decrease is notified in Entropy generation and Bejan number for increasing values of nanoparticle volume fraction. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics II)
Show Figures

Figure 1

4958 KiB  
Article
Heat Transfer and Entropy Generation of Non-Newtonian Laminar Flow in Microchannels with Four Flow Control Structures
by Ke Yang, Di Zhang, Yonghui Xie and Gongnan Xie
Entropy 2016, 18(8), 302; https://doi.org/10.3390/e18080302 - 12 Aug 2016
Cited by 6 | Viewed by 5015
Abstract
Flow characteristics and heat transfer performances of carboxymethyl cellulose (CMC) aqueous solutions in the microchannels with flow control structures were investigated in this study. The researches were carried out with various flow rates and concentrations of the CMC aqueous solutions. The results reveal [...] Read more.
Flow characteristics and heat transfer performances of carboxymethyl cellulose (CMC) aqueous solutions in the microchannels with flow control structures were investigated in this study. The researches were carried out with various flow rates and concentrations of the CMC aqueous solutions. The results reveal that the pin-finned microchannel has the most uniform temperature distribution on the structured walls, and the average temperature on the structured wall reaches the minimum value in cylinder-ribbed microchannels at the same flow rate and CMC concentration. Moreover, the protruded microchannel obtains the minimum relative Fanning friction factor f/f0, while, the maximum f/f0 is observed in the cylinder-ribbed microchannel. Furthermore, the minimum f/f0 is reached at the cases with CMC2000, and also, the relative Nusselt number Nu/Nu0 of CMC2000 cases is larger than that of other cases in the four structured microchannels. Therefore, 2000 ppm is the recommended concentration of CMC aqueous solutions in all the cases with different flow rates and flow control structures. Pin-finned microchannels are preferred in low flow rate cases, while, V-grooved microchannels have the minimum relative entropy generation S’/S0 and best thermal performance TP at CMC2000 in high flow rates. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics II)
Show Figures

Graphical abstract

4767 KiB  
Article
A Critical Reassessment of the Hess–Murray Law
by Enrico Sciubba
Entropy 2016, 18(8), 283; https://doi.org/10.3390/e18080283 - 05 Aug 2016
Cited by 19 | Viewed by 8249
Abstract
The Hess–Murray law is a correlation between the radii of successive branchings in bi/trifurcated vessels in biological tissues. First proposed by the Swiss physiologist and Nobel laureate Walter Rudolf Hess in his 1914 doctoral thesis and published in 1917, the law was “rediscovered” [...] Read more.
The Hess–Murray law is a correlation between the radii of successive branchings in bi/trifurcated vessels in biological tissues. First proposed by the Swiss physiologist and Nobel laureate Walter Rudolf Hess in his 1914 doctoral thesis and published in 1917, the law was “rediscovered” by the American physiologist Cecil Dunmore Murray in 1926. The law is based on the assumption that blood or lymph circulation in living organisms is governed by a “work minimization” principle that—under a certain set of specified conditions—leads to an “optimal branching ratio” of r i + 1 r i = 1 2 3 = 0.7937 . This “cubic root of 2” correlation underwent extensive theoretical and experimental reassessment in the second half of the 20th century, and the results indicate that—under a well-defined series of conditions—the law is sufficiently accurate for the smallest vessels (r of the order of fractions of millimeter) but fails for the larger ones; moreover, it cannot be successfully extended to turbulent flows. Recent comparisons with numerical investigations of branched flows led to similar conclusions. More recently, the Hess–Murray law came back into the limelight when it was taken as a founding paradigm of the Constructal Law, a theory that employs physical intuition and mathematical reasoning to derive “optimal paths” for the transport of matter and energy between a source and a sink, regardless of the mode of transportation (continuous, like in convection and conduction, or discrete, like in the transportation of goods and people). This paper examines the foundation of the law and argues that both for natural flows and for engineering designs, a minimization of the irreversibility under physically sound boundary conditions leads to somewhat different results. It is also shown that, in the light of an exergy-based resource analysis, an amended version of the Hess–Murray law may still hold an important position in engineering and biological sciences. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics II)
Show Figures

Graphical abstract

3798 KiB  
Article
Entropy Generation through Non-Equilibrium Ordered Structures in Corner Flows with Sidewall Mass Injection
by LaVar King Isaacson
Entropy 2016, 18(8), 279; https://doi.org/10.3390/e18080279 - 28 Jul 2016
Cited by 2 | Viewed by 5495
Abstract
Additional entropy generation rates through non-equilibrium ordered structures are predicted for corner flows with sidewall mass injection. Well-defined non-equilibrium ordered structures are predicted at a normalized vertical station of approximately eighteen percent of the boundary-layer thickness. These structures are in addition to the [...] Read more.
Additional entropy generation rates through non-equilibrium ordered structures are predicted for corner flows with sidewall mass injection. Well-defined non-equilibrium ordered structures are predicted at a normalized vertical station of approximately eighteen percent of the boundary-layer thickness. These structures are in addition to the ordered structures previously reported at approximately thirty-eight percent of the boundary layer thickness. The computational procedure is used to determine the entropy generation rate for each spectral velocity component at each of several stream wise stations and for each of several injection velocity values. Application of the procedure to possible thermal system processes is discussed. These results indicate that cooling sidewall mass injection into a horizontal laminar boundary layer may actually increase the heat transfer to the horizontal surface. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics II)
Show Figures

Graphical abstract

Review

Jump to: Research

1228 KiB  
Review
Nonequilibrium Thermodynamics of Ion Flux through Membrane Channels
by Chi-Pan Hsieh
Entropy 2017, 19(1), 40; https://doi.org/10.3390/e19010040 - 19 Jan 2017
Cited by 3 | Viewed by 6336
Abstract
Ion flux through membrane channels is passively driven by the electrochemical potential differences across the cell membrane. Nonequilibrium thermodynamics has been successful in explaining transport mechanisms, including the ion transport phenomenon. However, physiologists may not be familiar with biophysical concepts based on the [...] Read more.
Ion flux through membrane channels is passively driven by the electrochemical potential differences across the cell membrane. Nonequilibrium thermodynamics has been successful in explaining transport mechanisms, including the ion transport phenomenon. However, physiologists may not be familiar with biophysical concepts based on the view of entropy production. In this paper, I have reviewed the physical meanings and connections between nonequilibrium thermodynamics and the expressions commonly used in describing ion fluxes in membrane physiology. The fluctuation theorem can be applied to interpret the flux ratio in the small molecular systems. The multi-ion single-file feature of the ion channel facilitates the utilization of the natural tendency of electrochemical driving force to couple specific biophysical processes and biochemical reactions on the membrane. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics II)
Show Figures

Figure 1

13147 KiB  
Review
Generalized Thermodynamic Optimization for Iron and Steel Production Processes: Theoretical Exploration and Application Cases
by Lingen Chen, Huijun Feng and Zhihui Xie
Entropy 2016, 18(10), 353; https://doi.org/10.3390/e18100353 - 29 Sep 2016
Cited by 125 | Viewed by 15883
Abstract
Combining modern thermodynamics theory branches, including finite time thermodynamics or entropy generation minimization, constructal theory and entransy theory, with metallurgical process engineering, this paper provides a new exploration on generalized thermodynamic optimization theory for iron and steel production processes. The theoretical core is [...] Read more.
Combining modern thermodynamics theory branches, including finite time thermodynamics or entropy generation minimization, constructal theory and entransy theory, with metallurgical process engineering, this paper provides a new exploration on generalized thermodynamic optimization theory for iron and steel production processes. The theoretical core is to thermodynamically optimize performances of elemental packages, working procedure modules, functional subsystems, and whole process of iron and steel production processes with real finite-resource and/or finite-size constraints with various irreversibilities toward saving energy, decreasing consumption, reducing emission and increasing yield, and to achieve the comprehensive coordination among the material flow, energy flow and environment of the hierarchical process systems. A series of application cases of the theory are reviewed. It can provide a new angle of view for the iron and steel production processes from thermodynamics, and can also provide some guidelines for other process industries. Full article
(This article belongs to the Special Issue Advances in Applied Thermodynamics II)
Show Figures

Figure 1

Back to TopTop