energies-logo

Journal Browser

Journal Browser

Exploration and Development of Unconventional Oil and Gas Resources: Latest Advances and Prospects

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "H: Geo-Energy".

Deadline for manuscript submissions: 31 July 2024 | Viewed by 2536

Special Issue Editors


E-Mail Website
Guest Editor
Department of Energy and Environment, School of Energy Resources, China University of Geosciences, Beijing 100083, China
Interests: exploration and development of unconventional oil and gas resources such as coalbed methane, shale gas, shale oil, oil shale, and tight sandstone gas
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
Interests: reservoir geomechanics; unconventional oil and gas geology; basin analysis
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Energy, China University of Geosciences (Beijing), Beijing 10083, China
Interests: unconventional resource exploration and exploitation, especially for resource of deep coalbed methane

E-Mail
Guest Editor
General Prospecting Institute of China National Administration of Coal Geology, Beijing 100039, China
Interests: coalbed methane geology; coal body structure; hydrogeochemistry; favorable area optimization; well site deployment; in-situ stress; reservoir stimulation technology; dynamic permeability

E-Mail Website
Guest Editor
School of Vehicle And Energy, Yanshan University, Qinhuangdao 066004, China
Interests: unconventional resource exploration and exploitation; nanofluidics and nanorobotics for enhanced oil and gas recovery

Special Issue Information

Dear Colleagues,

Fossil fuels are important to both the global and Chinese economies, and “unconventional” oil and gas resources—resources that cannot be produced, transported, or refined using traditional techniques—are expected to play a larger role in helping the U.S. and China meet future energy needs. With rising energy prices, unconventional oil and gas resoures have received renewed domestic attention in recent years. The efficient exploration and development of unconventional oil and gas needs the support of a series of geological and engineering studies, including those focused on exploration, evaluation, drilling, completion, and production. The aim of this Special Issue is to introduce the latest progress in unconventional oil and gas geology and engineering, especially for reservoir evaluation, geological enrichment factors, enrichment model, permeability integrated evaluation, and mechanism analysis.

Prof. Dr. Shu Tao
Dr. Wei Ju
Dr. Shida Chen
Dr. Zhengguang Zhang
Dr. Jiang Han
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • unconventional oil and gas
  • exploration and development
  • reservoir evaluation
  • seepage mechanism
  • hydrocarbon enrichment model
  • reservoir petrophysics

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 6209 KiB  
Article
Study on Sedimentary Environment and Organic Matter Enrichment Model of Carboniferous–Permian Marine–Continental Transitional Shale in Northern Margin of North China Basin
by Hanyu Zhang, Yang Wang, Haoran Chen, Yanming Zhu, Jinghui Yang, Yunsheng Zhang, Kailong Dou and Zhixuan Wang
Energies 2024, 17(7), 1780; https://doi.org/10.3390/en17071780 - 08 Apr 2024
Viewed by 291
Abstract
The shales of the Taiyuan Formation and Shanxi Formation in the North China Basin have good prospects for shale gas exploration and development. In this study, Well KP1 at the northern margin of the North China Basin was used as the research object [...] Read more.
The shales of the Taiyuan Formation and Shanxi Formation in the North China Basin have good prospects for shale gas exploration and development. In this study, Well KP1 at the northern margin of the North China Basin was used as the research object for rock mineral, organic geochemical, and elemental geochemical analyses. The results show that brittle minerals in the shales of the Taiyuan Formation and Shanxi Formation are relatively rare (<40%) and that the clay mineral content is high (>50%). The average TOC content is 3.68%. The organic matter is mainly mixed and sapropelic. The source rocks of the Taiyuan Formation and Shanxi Formation are mainly felsic, and the tectonic background lies in the continental island arc area. The primary variables that influenced the enrichment of organic materials during the sedimentary stage of the Taiyuan Formation were paleosalinity and paleoproductivity. Paleosalinity acted as the primary regulator of organic matter enrichment during the sedimentary stage of the Shanxi Formation. Full article
Show Figures

Figure 1

20 pages, 5403 KiB  
Article
Intelligent Identification Method for the Diagenetic Facies of Tight Oil Reservoirs Based on Hybrid Intelligence—A Case Study of Fuyu Reservoir in Sanzhao Sag of Songliao Basin
by Tao Liu, Zongbao Liu, Kejia Zhang, Chunsheng Li, Yan Zhang, Zihao Mu, Fang Liu, Xiaowen Liu, Mengning Mu and Shiqi Zhang
Energies 2024, 17(7), 1708; https://doi.org/10.3390/en17071708 - 03 Apr 2024
Viewed by 321
Abstract
The diagenetic facies of tight oil reservoirs reflect the diagenetic characteristics and micro-pore structure of reservoirs, determining the formation and distribution of sweet spot zones. By establishing the correlation between diagenetic facies and logging curves, we can effectively identify the vertical variation of [...] Read more.
The diagenetic facies of tight oil reservoirs reflect the diagenetic characteristics and micro-pore structure of reservoirs, determining the formation and distribution of sweet spot zones. By establishing the correlation between diagenetic facies and logging curves, we can effectively identify the vertical variation of diagenetic facies types and predict the spatial variation of reservoir quality. However, it is still challenging work to establish the correlation between logging and diagenetic facies, and there are some problems such as low accuracy, high time consumption and high cost. To this end, we propose a lithofacies identification method for tight oil reservoirs based on hybrid intelligence using the Fuyu oil layer of the Sanzhao depression in Songliao Basin as the target area. Firstly, the geological characteristics of the selected area were analyzed, the definition and classification scheme of diagenetic facies and the dominant diagenetic facies were discussed, and the logging response characteristics of various diagenetic facies were summarized. Secondly, based on the standardization of logging curves, the logging image data set of various diagenetic facies was built, and the imbalanced data set processing was performed. Thirdly, by integrating CNN (Convolutional Neural Networks) and ViT (Visual Transformer), the C-ViTM hybrid intelligent model was constructed to identify the diagenetic facies of tight oil reservoirs. Finally, the effectiveness of the method is demonstrated through experiments with different thicknesses, accuracy and single-well identification. The experimental results show that the C-ViTM method has the best identification effect at the sample thickness of 0.5 m, with Precision of above 86%, Recall of above 90% and F1 score of above 89%. The calculation result of the Jaccard index in the identification of a single well was 0.79, and the diagenetic facies of tight reservoirs can be identified efficiently and accurately. At the same time, it also provides a new idea for the identification of the diagenetic facies of old oilfields with only logging image data sets. Full article
Show Figures

Figure 1

18 pages, 10301 KiB  
Article
Numerical Simulation Study on the Influence of Cracks in a Full-Size Core on the Resistivity Measurement Response
by Hanwen Zheng, Zhansong Zhang, Jianhong Guo, Sinan Fang and Can Wang
Energies 2024, 17(6), 1386; https://doi.org/10.3390/en17061386 - 13 Mar 2024
Viewed by 410
Abstract
The development of fractured oil fields poses a formidable challenge due to the intricate nature of fracture development and distribution. Fractures profoundly impact core resistivity, making it crucial to investigate the mechanism behind the resistivity response change in fracture cores. In this study, [...] Read more.
The development of fractured oil fields poses a formidable challenge due to the intricate nature of fracture development and distribution. Fractures profoundly impact core resistivity, making it crucial to investigate the mechanism behind the resistivity response change in fracture cores. In this study, we employed the theory of a stable current field to perform a numerical simulation of the resistivity response of single-fracture and complex-fracture granite cores, using a full-size granite core with cracks as the model. We considered multiple parameters of the fracture itself and the formation to explore the resistivity response change mechanism of the fracture core. Our findings indicate that, in the case of a core with a single fracture, the angle, width, and length of the fracture (fracture occurrence) significantly affect core resistivity. When two fractures run parallel for a core with complex fractures, the change law of core resistivity is similar to that of a single fracture. However, if two fractures intersect, the relative position of the two fractures becomes a significant factor in addition to the width and length of the fracture. Interestingly, a 90° difference exists between the change law of core resistivity and the change law of the resistivity logging response. Furthermore, the core resistivity is affected by matrix resistivity and the resistivity of the mud filtrate, which emphasizes the need to calibrate the fracture dip angle calculated using dual laterolog resistivity with actual core data or special logging data in reservoirs with different geological backgrounds. In the face of multiple fractures, the dual laterolog method has multiple solutions. Our work provides a reference and theoretical basis for interpreting oil and gas in fractured reservoirs based on logging data and holds significant engineering guiding significance. Full article
Show Figures

Figure 1

15 pages, 5131 KiB  
Article
Evaluation of Grain Size Effects on Porosity, Permeability, and Pore Size Distribution of Carbonate Rocks Using Nuclear Magnetic Resonance Technology
by Shutong Wang, Yanhai Chang, Zefan Wang and Xiaoxiao Sun
Energies 2024, 17(6), 1370; https://doi.org/10.3390/en17061370 - 13 Mar 2024
Viewed by 408
Abstract
Core analysis is an accurate and direct method for finding the physical properties of oil and natural gas reservoirs. However, in some cases coring is time consuming and difficult, and only cuttings with the drilling fluid can be obtained. It is important to [...] Read more.
Core analysis is an accurate and direct method for finding the physical properties of oil and natural gas reservoirs. However, in some cases coring is time consuming and difficult, and only cuttings with the drilling fluid can be obtained. It is important to determine whether cuttings can adequately represent formation properties such as porosity, permeability, and pore size distribution (PSD). In this study, seven limestone samples with different sizes were selected (Cubes: 4 × 4 × 4 cm, 4 × 4 × 2 cm, 4 × 2 × 2 cm and 2 × 2 × 2 cm, Core: diameter of 2.5 cm and a length of 5 cm, Cuttings: 1–1.7 mm and 4.7–6.75 mm in diameter), and low-field nuclear magnetic resonance (NMR) measurements were performed on these samples to obtain porosity, PSD, and permeability. The results showed that the porosity of cubes and cuttings with different sizes are consistent with cores, which is about 1%. Whereas the PSDs and permeabilities of the two cutting samples (less than in size 6.75 mm) differ significantly within cores. It is suggested that interparticle voids and mechanical pulverization during sample preparation have a negligible effect on porosity and a larger effect on PSD and permeability. Combined with factors such as wellbore collapse and mud contamination suffered in the field, it is not recommended to use cuttings with a particle size of less than 6.75 mm to characterize actual extra-low porosity and extra-low permeability formation properties. Full article
Show Figures

Figure 1

22 pages, 19611 KiB  
Article
Geological Constraints on the Gas-Bearing Properties in High-Rank Coal: A Case Study of the Upper Permian Longtan Formation from the Songzao Coalfield, Chongqing, Southwest China
by Dishu Chen, Jinxi Wang, Xuesong Tian, Dongxin Guo, Yuelei Zhang and Chunlin Zeng
Energies 2024, 17(5), 1262; https://doi.org/10.3390/en17051262 - 06 Mar 2024
Viewed by 378
Abstract
The Permian Longtan Formation in the Songzao coalfield, Southwest China, has abundant coalbed methane (CBM) stored in high-rank coals. However, few studies have been performed on the mechanism underlying the differences in CBM gas content in high-rank coal. This study focuses on the [...] Read more.
The Permian Longtan Formation in the Songzao coalfield, Southwest China, has abundant coalbed methane (CBM) stored in high-rank coals. However, few studies have been performed on the mechanism underlying the differences in CBM gas content in high-rank coal. This study focuses on the characterization of coal geochemical, reservoir physical, and gas-bearing properties in the coal seams M6, M7, M8, and M12 based on the CBM wells and coal exploration boreholes, discusses the effects of depositional environment, tectono-thermal evolution, and regional geological structure associated with CBM, and identifies major geological constraints on the gas-bearing properties in high-rank coal. The results show that high-rank coals are characterized by high TOC contents (31.49~51.32 wt%), high Tmax and R0 values (averaging 539 °C and 2.17%), low HI values (averaging 15.21 mg of HC/g TOC), high porosity and low permeability, and high gas-bearing contents, indicating a post-thermal maturity and a good CBM production potential. Changes in the shallow bay–tidal flat–lagoon environment triggered coal formation and provided the material basis for CBM generation. Multistage tectono-thermal evolution caused by the Emeishan mantle plume activity guaranteed the temperature and time for overmaturation and thermal metamorphism and added massive pyrolytic CBM, which improved the gas production potential. Good geological structural conditions, like enclosed fold regions, were shown to directly control CBM accumulation. Full article
Show Figures

Figure 1

Back to TopTop