Epigenetic Regulation and Its Impact for Medicine

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Cell Biology and Pathology".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 780

Special Issue Editor


E-Mail Website
Guest Editor
Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska 87, Vinohrady, 10000 Prague, Czech Republic
Interests: epigenetics of human; etiopatogenesis of multifactorial diseases; immunogenetics of autoimmunity
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The term epigenetics was first introduced by Conrad Waddington in 1942. For half a century, its significance to gene expression, cell differentiation and heritability was unclear. However, modern technologies that emerged at the beginning of the 21st century have opened a new area of research. The epigenetic regulation of the genome allow cells to react to external signals caused by the alternation of gene activity by modifying gene expression. Epigenome controls the accessibility of DNA for transcription factors that regulate the level of gene expression. Therefore, epigenetic modifications are the collective heritable changes in phenotype caused by the processes that arise independent of primary DNA sequence.

A major driving force in epigenetics has been the development of new technology that has not only stimulated new discoveries, but also expanded this field by allowing novel discoveries only possible through the use of these tools.

Plenty of studies have focused on the identification of possible biomarkers able to predict the onset of the disease, its activity degree, its progression phase and its response to disease-modifying drugs. Non-coding RNAs have the potential to serve as such biomarkers. These molecules can easily be detected in the peripheral blood or urine.

We encourage authors to submit articles and review papers about the role of epigenetic modulation in the etiopathology, prognosis and therapy of various diseases. We believe that this Special Issue will reflect the new era of epigenetics and show its important role in modern medicine.

Dr. Marie Černá
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • gene expression
  • DNA methylation
  • histone modifications
  • non-coding RNAs
  • biomarkers

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

37 pages, 3491 KiB  
Review
lncRNA Biomarkers of Glioblastoma Multiforme
by Markéta Pokorná, Marie Černá, Stergios Boussios, Saak V. Ovsepian and Valerie Bríd O’Leary
Biomedicines 2024, 12(5), 932; https://doi.org/10.3390/biomedicines12050932 - 23 Apr 2024
Viewed by 393
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have [...] Read more.
Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis. The expression of lncRNAs in the nervous system varies in different cell types, implicated in mechanisms of neurons and glia, with effects on the development and functioning of the brain. Reports have also shown a link between changes in lncRNA molecules and the etiopathogenesis of brain neoplasia, including glioblastoma multiforme (GBM). GBM is an aggressive variant of brain cancer with an unfavourable prognosis and a median survival of 14–16 months. It is considered a brain-specific disease with the highly invasive malignant cells spreading throughout the neural tissue, impeding the complete resection, and leading to post-surgery recurrences, which are the prime cause of mortality. The early diagnosis of GBM could improve the treatment and extend survival, with the lncRNA profiling of biological fluids promising the detection of neoplastic changes at their initial stages and more effective therapeutic interventions. This review presents a systematic overview of GBM-associated deregulation of lncRNAs with a focus on lncRNA fingerprints in patients’ blood. Full article
(This article belongs to the Special Issue Epigenetic Regulation and Its Impact for Medicine)
Show Figures

Figure 1

Back to TopTop