Functional Metamaterials

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Materials Science and Engineering".

Deadline for manuscript submissions: closed (1 July 2021) | Viewed by 6518

Special Issue Editors

Special Issue Information

Dear Colleagues,

Controlling light, electricity, and heat have made a tremendous impact on technological advancements throughout human history. Advances in electrical and electromagnetic technologies, wireless communications, lasers, and computers have all been made possible by challenging our understanding of how light and other energy forms naturally behave, and how it is possible to manipulate them.

Over the past 20 years, techniques for producing nanostructures have matured, resulting in a wide range of ground-breaking solutions that can control light and heat on very small scales. Some of the areas of advancement that have contributed to these techniques are photonic crystals, nanolithography, plasmonic phenomena, and nanoparticle manipulation. From these advances, a new branch of material science has emerged—metamaterials. Metamaterials have, in the last few decades, inspired scientists and engineers to think about waves beyond traditional constraints imposed by materials in which they propagate, conceiving new functionalities, such as subwavelength imaging, invisibility cloaking, and broadband ultraslow light. While mainly for ease of fabrication, many of the metamaterials concepts have initially been demonstrated at longer wavelengths and for microwaves, metamaterials have subsequently moved to photonic frequencies and the nanoscale. At the same time, metamaterials are recently embedding new quantum materials such as graphene, dielectric nanostructures and, as metasurfaces, surface geometries and surface waves, while also embracing new functionalities such as nonlinearity, quantum gain, and strong light–matter coupling.

This Special Issue focuses on the design and fabrication of metamaterials and other functional materials. These are complex structures patterned in ways that perform a special function, such as transparently blocking a specific color of light, or invisibly heating a window in a car. These functions more generally include manipulating light, heat, and electromagnetic waves in unusual ways. The Special Issue is devoted to discussing recent developments in the fields of artificial materials and their applications ranging from compositions, structures such as orientation, arrangement, geometry, size, shape, and smart properties including manipulation of electromagnetic waves by blocking, absorbing, enhancing, or bending waves.

Prof. Dr. Edik U. Rafailov
Prof. Dr. Tatjana Gric
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 992 KiB  
Article
High-Resolution Measurement of Molecular Internal Polarization Structure by Photoinduced Force Microscopy
by Hidemasa Yamane, Nobuhiko Yokoshi and Hajime Ishihara
Appl. Sci. 2021, 11(15), 6937; https://doi.org/10.3390/app11156937 - 28 Jul 2021
Cited by 7 | Viewed by 2000
Abstract
Near-field interactions between metallic surfaces and single molecules play an essential role in the application of metamaterials. To reveal the near-field around a photo-irradiated single molecule on the metallic surface, high-resolution photo-assisted scanning microscopy is required. In this study, we theoretically propose photoinduced [...] Read more.
Near-field interactions between metallic surfaces and single molecules play an essential role in the application of metamaterials. To reveal the near-field around a photo-irradiated single molecule on the metallic surface, high-resolution photo-assisted scanning microscopy is required. In this study, we theoretically propose photoinduced force microscopy (PiFM) measurements of single molecules at the atomic resolution. For experimental demonstration, we performed a numerical calculation of PiFM images of various transition states, including optical forbidden transitions, and interpreted them in terms of the interaction between the molecular internal polarization structures and localized plasmon. We also clarified the critical role of atomic-scale structures on the tip surface for high-resolution PiFM measurements. Full article
(This article belongs to the Special Issue Functional Metamaterials)
Show Figures

Figure 1

8 pages, 1449 KiB  
Article
Controlling Surface Plasmon Polaritons Propagating at the Boundary of Low-Dimensional Acoustic Metamaterials
by Thanos Ioannidis, Tatjana Gric and Edik Rafailov
Appl. Sci. 2021, 11(14), 6302; https://doi.org/10.3390/app11146302 - 08 Jul 2021
Cited by 4 | Viewed by 1622
Abstract
As a novel type of artificial media created recently, metamaterials demonstrate novel performance and consequently pave the way for potential applications in the area of functional engineering in comparison to the conventional substances. Acoustic metamaterials and plasmonic structures possess a wide variety of [...] Read more.
As a novel type of artificial media created recently, metamaterials demonstrate novel performance and consequently pave the way for potential applications in the area of functional engineering in comparison to the conventional substances. Acoustic metamaterials and plasmonic structures possess a wide variety of exceptional physical features. These include effective negative properties, band gaps, negative refraction, etc. In doing so, the acoustic behaviour of conventional substances is extended. Acoustic metamaterials are considered as the periodic composites with effective parameters that might be engineered with the aim to dramatically control the propagation of supported waves. Homogenization of the system under consideration should be performed to seek the calculation of metamaterial permittivity. The dispersion behaviour of surface waves propagating from the boundary of a nanocomposite composed of semiconductor enclosures that are systematically distributed in a transparent matrix and low-dimensional acoustic metamaterial and constructed by an array of nanowires implanted in a host material are studied. We observed the propagation of surface plasmon polaritons. It is demonstrated that one may dramatically modify the properties of the system by tuning the geometry of inclusions. Full article
(This article belongs to the Special Issue Functional Metamaterials)
Show Figures

Figure 1

14 pages, 7428 KiB  
Article
Highly Transparent Broadband and Polarization-Insensitive Absorber Based on Metasurface
by Houdi Xiao, Ruiru Qin, Mingyun Lv and Chuanzhi Wang
Appl. Sci. 2020, 10(24), 9125; https://doi.org/10.3390/app10249125 - 21 Dec 2020
Cited by 10 | Viewed by 2143
Abstract
A highly transparent polarization-insensitive metamaterial absorber with wideband microwave absorption is presented. The broadband absorption (6.0~16.7 GHz, absorptance > 85%) is achieved using three patterned resistive metasurfaces. The visible light transmittance of the absorber is as high as 85.7%. The thickness of the [...] Read more.
A highly transparent polarization-insensitive metamaterial absorber with wideband microwave absorption is presented. The broadband absorption (6.0~16.7 GHz, absorptance > 85%) is achieved using three patterned resistive metasurfaces. The visible light transmittance of the absorber is as high as 85.7%. The thickness of the absorber is 4.42 mm, which is only 0.088 times of the upper-cutoff wavelength. A prototype sample is fabricated and measured to demonstrate its excellent performance. The experimental results agree well with the simulation results. In view of its wide band absorption, high transmittance, low profile, polarization insensitivity and wide incidence angle stability, the presented absorber has a wide range of potential applications. Full article
(This article belongs to the Special Issue Functional Metamaterials)
Show Figures

Figure 1

Back to TopTop