Application of Natural Products for Weed Control in Agricultural Systems

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Weed Science and Weed Management".

Deadline for manuscript submissions: 20 August 2024 | Viewed by 1170

Special Issue Editor


E-Mail Website
Guest Editor
Department of Biological Sciences, São Paulo State University “Júlio de Mesquita Filho”, Assis 19806-900, São Paulo, Brazil
Interests: allelopathy; phytotoxic activity; alternative herbicides; natural products; weed control; abiotic stress and plant responses

Special Issue Information

Dear Colleagues,

Considering that many weeds have become resistant to the herbicides that are currently available, and the growing global demand for food produced in economic and environmentally sustainable ways, more studies are needed to find replacements for at least some of the existing products used for weed control. Innovative and sustainable solutions are needed, which could involve the use of natural products, such as allelochemicals, or synthetic products inspired by natural products, to control weeds. This Special Issue is a place to share your studies on topics related to weed research. In particular, submissions on the following, and related, topics are encouraged: (1) the phytotoxicity of living organism extracts; (2) the fate of allelochemicals in agricultural systems; (3) natural substances which could be used as bioherbicides and their mechanisms of action; and (4) the phytotoxicity of synthetic products inspired by natural products.

Prof. Dr. Rosana Marta Kolb
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioherbicide
  • allelopathy
  • phytotoxicity bioassays

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 5791 KiB  
Article
Unraveling Shikimate Dehydrogenase Inhibition by 6-Nitroquinazoline-2,4-diol and Its Impact on Soybean and Maize Growth
by Aline Marengoni Almeida, Josielle Abrahão, Flavio Augusto Vicente Seixas, Paulo Sergio Alves Bueno, Marco Aurélio Schüler de Oliveira, Larissa Fonseca Tomazini, Rodrigo Polimeni Constantin, Wanderley Dantas dos Santos, Rogério Marchiosi and Osvaldo Ferrarese-Filho
Agronomy 2024, 14(5), 930; https://doi.org/10.3390/agronomy14050930 (registering DOI) - 28 Apr 2024
Viewed by 238
Abstract
The shikimate pathway is crucial for the biosynthesis of aromatic amino acids in plants and represents a promising target for developing new herbicides. This work aimed to identify inhibitors of shikimate dehydrogenase (SDH), a key enzyme of the shikimate pathway that catalyzes the [...] Read more.
The shikimate pathway is crucial for the biosynthesis of aromatic amino acids in plants and represents a promising target for developing new herbicides. This work aimed to identify inhibitors of shikimate dehydrogenase (SDH), a key enzyme of the shikimate pathway that catalyzes the conversion of 3-dehydroshikimate to shikimate. Virtual screening and molecular dynamic simulations were performed on the SDH active site of Arabidopsis thaliana (AtSDH), and 6-nitroquinazoline-2,4-diol (NQD) was identified as a potential inhibitor. In vitro assays showed that NQD decreased the activity of AtSDH by reducing Vmax while keeping KM unchanged, indicating non-competitive inhibition. In vivo, hydroponic experiments revealed that NQD reduced the root length of soybean and maize. Additionally, NQD increased the total protein content and certain amino acids. Soybean roots uptake NQD more efficiently than maize roots. Furthermore, NQD reduced shikimate accumulation in glyphosate-treated soybean roots, suggesting its potential to restrict the flow of metabolites along the shikimate pathway in soybean. The simultaneous treatment of maize seedlings with glyphosate and NQD accumulated gallic acid in the roots, indicating that NQD inhibits SDH in vivo. Overall, the data indicate that NQD inhibits SDH both in vitro and in vivo, providing valuable insights into the potential development of herbicides targeting SDH. Full article
Show Figures

Figure 1

15 pages, 1236 KiB  
Article
Herbicidal Potential of the Natural Compounds Carvacrol, Thymol, Eugenol, p-Cymene, Citral and Pelargonic Acid in Field Conditions: Indications for Better Performance
by Natalia Torres-Pagán, Marta Muñoz, Sara Barbero, Roberta Mamone, Rosa Peiró, Alessandra Carrubba, Adela M. Sánchez-Moreiras, Diego Gómez de Barreda and Mercedes Verdeguer
Agronomy 2024, 14(3), 537; https://doi.org/10.3390/agronomy14030537 - 05 Mar 2024
Viewed by 766
Abstract
In recent years, interest in natural products with herbicidal activity as new tools for integrated weed management has increased. The European Union is demanding a reduction in the number of herbicides used, forbidding use of the most toxic ones, despite the problem of [...] Read more.
In recent years, interest in natural products with herbicidal activity as new tools for integrated weed management has increased. The European Union is demanding a reduction in the number of herbicides used, forbidding use of the most toxic ones, despite the problem of weed resistance increasing. Pelargonic acid (PA) is the only natural herbicide available in Spain. In this work, two field assays were performed with the natural compounds carvacrol (CAR), citral (CIT), eugenol (EUG), thymol (THY), p-cymene (P-CYM), (PA), and the combination of PA with CIT—all except P-CYM formulated by Seipasa—to test their herbicidal efficacy in real conditions. They were compared with commercial PA, glyphosate (GLY) and oxyfluorfen (OXY). In both experiments, GLY achieved the best weed control. Considering the natural herbicides, PA formulated by Seipasa and PA plus CIT were the most effective. From both experiments, some conclusions can be extracted for better herbicidal performance of natural products: (1) use products on sensitive weed species, (2) treat weeds at earlier phenological stages, (3) find the active doses in field conditions, (4) cover weeds well when treating, (5) ensure adequate formulation of products, and (6) develop a strategy for correct application. Full article
Show Figures

Figure 1

Back to TopTop