Next Issue
Volume 1, December
Previous Issue
Volume 1, June
 
 

Chips, Volume 1, Issue 2 (September 2022) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
38 pages, 7055 KiB  
Article
Integrated Sensor Electronic Front-Ends with Self-X Capabilities
by Senan Alraho, Qummar Zaman, Hamam Abd and Andreas König
Chips 2022, 1(2), 83-120; https://doi.org/10.3390/chips1020008 - 12 Aug 2022
Cited by 2 | Viewed by 3283
Abstract
The ongoing vivid advance in integration technologies is giving leverage both to computing systems as well as to sensors and sensor systems. Both conventional computing systems as well as innovative computing systems, e.g., following bio-inspiration from nervous systems or neural networks, require efficient [...] Read more.
The ongoing vivid advance in integration technologies is giving leverage both to computing systems as well as to sensors and sensor systems. Both conventional computing systems as well as innovative computing systems, e.g., following bio-inspiration from nervous systems or neural networks, require efficient interfacing to an increasing diversity of sensors under the constraints of metrology. The realization of sufficiently accurate, robust, and flexible analog front-ends (AFE) is decisive for the overall application system and quality and requires substantial design expertise both for cells in System-on-Chip (SoC) or chips in System-in-Package (SiP) realizations. Adding robustness and flexibility to sensory systems, e.g., for Industry 4.0., by self-X or self-* features, e.g., self-monitoring, -trimming, or -healing (AFEX) approaches the capabilities met in living beings and is pursued in our research. This paper summarizes on two chips, denoted as Universal-Sensor-Interface-with-self-X-properties (USIX) based on amplitude representation and reports on recently identified challenges and corresponding advanced solutions, e.g., on circuit assessment as well as observer robustness for classic amplitude-based AFE, and transition activities to spike domain representation spiking-analog-front-ends with self-X properties (SAFEX) based on adaptive spiking electronics as the next evolutionary step in AFE development. Key cells for AFEX and SAFEX have been designed in XFAB xh035 CMOS technology and have been subject to extrinsic optimization and/or adaptation. The submitted chip features 62,921 transistors, a total area of 10.89 mm2 (74% analog, 26% digital), and 66 bytes of the configuration memory. The prepared demonstrator will allow intrinsic optimization and/or adaptation for the developed technology agnostic concepts and chip instances. In future work, confirmed cells will be moved to complete versatile and robust AFEs, which can serve both for conventional as well as innovative computing systems, e.g., spiking neurocomputers, as well as to leading-edge technologies to serve in SOCs. Full article
Show Figures

Figure 1

11 pages, 2902 KiB  
Article
Signal Amplification by Means of a Dickson Charge Pump: Analysis and Experimental Validation
by Andrea Ballo, Alfio Dario Grasso and Gaetano Palumbo
Chips 2022, 1(2), 72-82; https://doi.org/10.3390/chips1020007 - 18 Jul 2022
Cited by 4 | Viewed by 2202
Abstract
Recently, with the aim of extending the use of the CP in all those applications where a time-variant signal must be amplified with its DC component above the positive power supply rail, the signal amplification feature of a conventional Dickson charge pump (CP) [...] Read more.
Recently, with the aim of extending the use of the CP in all those applications where a time-variant signal must be amplified with its DC component above the positive power supply rail, the signal amplification feature of a conventional Dickson charge pump (CP) has been investigated, introducing a small-signal model for each particular condition in which a CP can work. In this paper this idea is further investigated, especially under the slow switching limit (SSL) condition, and experimental validation has been carried out using a 65 nm CMOS technology for four different voltage gain values. Starting from an equivalent model of the CP, the main small- and large-signal parameters are analytically derived and discussed in depth. As a proof of concept, experimental measurements on four CPs with different numbers of stages confirm the validity of this unconventional application and the effectiveness of the CP when used as an amplifier. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop