Next Issue
Volume 2, March
Previous Issue
Volume 1, September
 
 

Photochem, Volume 1, Issue 3 (December 2021) – 15 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 4709 KiB  
Article
Foam-like 3D Graphene as a Charge Transport Modifier in Zinc Oxide Electron Transport Material in Perovskite Solar Cells
by Mohamed Salleh Mohamed Saheed, Norani Muti Mohamed, Balbir Singh Mahinder Singh, Qamar Wali, Mohamed Shuaib Mohamed Saheed and Rajan Jose
Photochem 2021, 1(3), 523-536; https://doi.org/10.3390/photochem1030034 - 08 Dec 2021
Cited by 2 | Viewed by 2437
Abstract
The effect of foam-like 3D graphene (3DG) in an electron transport material (ETM), viz. ZnO thin film, on the steady-state photoluminescence (PL), light-harvesting efficiency (LHE), photocurrent density (JSC), photovoltage (VOC), and charge transport parameters of perovskite solar cells (PSCs) [...] Read more.
The effect of foam-like 3D graphene (3DG) in an electron transport material (ETM), viz. ZnO thin film, on the steady-state photoluminescence (PL), light-harvesting efficiency (LHE), photocurrent density (JSC), photovoltage (VOC), and charge transport parameters of perovskite solar cells (PSCs) are systematically investigated. The ETM is developed by spin coating a ZnO precursor solution containing varying amounts of 3DG on conducting glass substrates and appropriate annealing. A significant improvement in the photoconversion efficiency of PSCs is observed for a low concentration of 3DG in ZnO. The current–voltage and electrochemical impedance spectroscopy measurements show that the addition of 3DG enhances the VOC due to efficient electron–hole separation and charge transport compared to the pristine ZnO. These studies offer a route for further advances in enhancing the optoelectronic properties of ETM for artificial photosynthesis and photocatalysis devices. Full article
Show Figures

Figure 1

18 pages, 3539 KiB  
Article
Photodynamic Effect of 5,10,15,20-Tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]chlorin towards the Human Pathogen Candida albicans under Different Culture Conditions
by Paula V. Cordero, Darío D. Ferreyra, María E. Pérez, María G. Alvarez and Edgardo N. Durantini
Photochem 2021, 1(3), 505-522; https://doi.org/10.3390/photochem1030033 - 03 Dec 2021
Cited by 1 | Viewed by 1897
Abstract
Photocytotoxic activity sensitized by 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]chlorin (TAPC) was investigated in Candida albicans under different culture conditions. Planktonic cells incubated with 2.5 μM TAPC were eradicated after 5 min irradiation with white light. Studies in the presence of reactive oxygen species scavengers indicated [...] Read more.
Photocytotoxic activity sensitized by 5,10,15,20-tetrakis[4-(3-N,N-dimethylaminopropoxy)phenyl]chlorin (TAPC) was investigated in Candida albicans under different culture conditions. Planktonic cells incubated with 2.5 μM TAPC were eradicated after 5 min irradiation with white light. Studies in the presence of reactive oxygen species scavengers indicated the involvement of mainly a type II mechanism. Furthermore, cell growth of C. albicans was suppressed in the presence of 5 μM TAPC. A decrease in pseudohyphae survival of 5 log was found after 30 min irradiation. However, the photokilling of this virulence factor reached a 1.5 log reduction in human serum. The uptake of TAPC by pseudohyphae decreased in serum due to the interaction of TAPC with albumin. The binding constant of the TAPC-albumin complex was ~104 M−1, while the bimolecular quenching rate constant was ~1012 s−1 M−1, indicating that this process occurred through a static process. Thus, the photoinactivation of C. albicans was considerably decreased in the presence of albumin. A reduction of 2 log in cell survival was observed using 4.5% albumin and 30 min irradiation. The results allow optimizing the best conditions to inactivate C. albicans under different culture conditions. Full article
Show Figures

Graphical abstract

17 pages, 3251 KiB  
Article
Remazol Black Decontamination Study Using a Novel One-Pot Synthesized S and Co Co-Doped TiO2 Photocatalyst
by Riska Dwiyanna, Roto Roto and Endang Tri Wahyuni
Photochem 2021, 1(3), 488-504; https://doi.org/10.3390/photochem1030032 - 26 Nov 2021
Cited by 2 | Viewed by 1983
Abstract
This study investigated the decolorization of Remazol Black (RBB) using a TiO2 photocatalyst modified by S and Co co-doped TiO2 (S-Co-TiO2) from a single precursor. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and UV–Vis specular reflectance spectroscopy [...] Read more.
This study investigated the decolorization of Remazol Black (RBB) using a TiO2 photocatalyst modified by S and Co co-doped TiO2 (S-Co-TiO2) from a single precursor. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and UV–Vis specular reflectance spectroscopy were used to characterize the photocatalysts. The results revealed that the band-gap energy of the doped and co-doped TiO2 decreased, with the S-Co-TiO2 8% showing the greatest one, and was found to be 2.78 eV while undoped TiO2 was 3.20 eV. The presence of S and Co was also identified through SEM-EDX. An activity study on RBB removal revealed that the S-Co-TiO2 photocatalyst showed the best result compared to undoped TiO2, S-TiO2, and Co-TiO2. The S-Co-TiO2 8% photocatalyst reduced RBB concentration (20 mg L−1) up to 96% after 90 min of visible light irradiation, whereas S-TiO2, Co-TiO2, and undoped TiO2 reduced it to 89%, 56%, and 39%, respectively. A pH optimization study showed that the optimum pH of RBB decolorization by S-Co-TiO2 was 3.0, the optimum mass was 0.6 g L−1, and reuse studies show that S-Co-TiO2 8% has the potential to be used repeatedly to remove colored pollutants. The results obtained indicate that the modification of S, Co co-doped titania synthesized using a single precursor has been successfully carried out and showed excellent characteristics and activity compared to undoped or doped TiO2. Full article
Show Figures

Figure 1

11 pages, 1353 KiB  
Article
Mono-, Di-, Tri-Pyrene Substituted Cyclic Triimidazole: A Family of Highly Emissive and RTP Chromophores
by Daniele Malpicci, Clelia Giannini, Elena Lucenti, Alessandra Forni, Daniele Marinotto and Elena Cariati
Photochem 2021, 1(3), 477-487; https://doi.org/10.3390/photochem1030031 - 18 Nov 2021
Cited by 7 | Viewed by 2329
Abstract
The search of new organic emitters is receiving a strong motivation by the development of ORTP materials. In the present study we report on the preparation, optical and photophysical characterization, by both steady state and time resolved techniques, of two pyrene-functionalized cyclic triimidazole [...] Read more.
The search of new organic emitters is receiving a strong motivation by the development of ORTP materials. In the present study we report on the preparation, optical and photophysical characterization, by both steady state and time resolved techniques, of two pyrene-functionalized cyclic triimidazole derivatives. Together with the already reported mono-substituted derivative, the di- and tri-substituted members of the family have revealed as intriguing emitters characterized by impressive quantum yields in solution and RTP properties in the solid state. In particular, phosphorescence lifetimes increase from 5.19 to 20.54 and 40.62 ms for mono-, di- and trisubstituted compounds, respectively. Based on spectroscopical results and theoretical DFT/TDDFT calculations on the di-pyrene molecule, differences in photophysical performances of the three compounds have been assigned to intermolecular interactions increasing with the number of pyrene moieties appended to the cyclic triimidazole scaffold. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry)
Show Figures

Figure 1

15 pages, 3809 KiB  
Article
Photocatalytic Reduction of CO2 over Iron-Modified g-C3N4 Photocatalysts
by Miroslava Edelmannová, Martin Reli, Kamila Kočí, Ilias Papailias, Nadia Todorova, Tatiana Giannakopoulou, Panagiotis Dallas, Eamonn Devlin, Nikolaos Ioannidis and Christos Trapalis
Photochem 2021, 1(3), 462-476; https://doi.org/10.3390/photochem1030030 - 13 Nov 2021
Cited by 4 | Viewed by 2567
Abstract
Pure g-C3N4 sample was prepared by thermal treatment of melamine at 520 °C, and iron-modified samples (0.1, 0.3 and 1.1 wt.%) were prepared by mixing g-C3N4 with iron nitrate and calcination at 520 °C. The photocatalytic activity [...] Read more.
Pure g-C3N4 sample was prepared by thermal treatment of melamine at 520 °C, and iron-modified samples (0.1, 0.3 and 1.1 wt.%) were prepared by mixing g-C3N4 with iron nitrate and calcination at 520 °C. The photocatalytic activity of the prepared materials was investigated based on the photocatalytic reduction of CO2, which was conducted in a homemade batch reactor that had been irradiated from the top using a 365 nm Hg lamp. The photocatalyst with the lowest amount of iron ions exhibited an extraordinary methane and hydrogen evolution in comparison with the pure g-C3N4 and g-C3N4 with higher iron amounts. A higher amount of iron ions was not a beneficial for CO2 photoreduction because the iron ions consumed too many photogenerated electrons and generated hydroxyl radicals, which oxidized organic products from the CO2 reduction. It is clear that there are numerous reactions that occur simultaneously during the photocatalytic process, with several of them competing with CO2 reduction. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry)
Show Figures

Graphical abstract

2 pages, 149 KiB  
Editorial
Visible-Light-Active Photocatalysts for Environmental Remediation and Organic Synthesis
by Vincenzo Vaiano
Photochem 2021, 1(3), 460-461; https://doi.org/10.3390/photochem1030029 - 11 Nov 2021
Cited by 1 | Viewed by 1860
Abstract
In recent years, the formulation of innovative photocatalysts activated by visible or solar light has been attracting increasing attention because of their notable potential for environmental remediation and use in organic synthesis reactions [...] Full article
2 pages, 171 KiB  
Editorial
Renaissance of “Photoredox Catalysis” for Organic Molecules
by Yasuharu Yoshimi
Photochem 2021, 1(3), 458-459; https://doi.org/10.3390/photochem1030028 - 04 Nov 2021
Cited by 1 | Viewed by 1760
Abstract
The concept of “Photoredox Catalysis” for organic molecules was reported by Sakurai and Pac in 1977 [...] Full article
(This article belongs to the Special Issue Photoredox Catalysis 2021)
10 pages, 1189 KiB  
Article
Transition-Metal-Free Access to 2-Subsituted Indolines from Indoles via Dearomative Nucleophilic Addition Using Two-Molecule Organic Photoredox Catalysts
by Yosuke Tanaka, Takumi Ikeda, Yasuhiro Nachi, Taisei Mizuno, Kousuke Maeda, Chisato Sakamoto, Mugen Yamawaki, Toshio Morita and Yasuharu Yoshimi
Photochem 2021, 1(3), 448-457; https://doi.org/10.3390/photochem1030027 - 01 Nov 2021
Cited by 2 | Viewed by 2470
Abstract
A Photoinduced dearomative nucleophilic addition to N-Boc indoles mediated by two-molecule organic photoredox catalysts such as phenanthrene and 1,4-dicyanobenzene with UV irradiation furnished 2-substituted indolines in moderate to quantitative yields. Hydroxide, alkoxide, and cyanide ions can be used as a nucleophile to [...] Read more.
A Photoinduced dearomative nucleophilic addition to N-Boc indoles mediated by two-molecule organic photoredox catalysts such as phenanthrene and 1,4-dicyanobenzene with UV irradiation furnished 2-substituted indolines in moderate to quantitative yields. Hydroxide, alkoxide, and cyanide ions can be used as a nucleophile to provide 2-hydroxy, 2-alkoxy, and 2-cyanoindolines, respectively. Both electron-rich and -deficient indoles, including tryptophan derivatives, can be employed in the photoreaction to provide various indolines. This method provides transition-metal-free access to 2-subsituted indolines from indoles using organic photoredox catalysts under mild conditions. Full article
(This article belongs to the Special Issue Photoredox Catalysis 2021)
Show Figures

Graphical abstract

14 pages, 985 KiB  
Review
Recent Advances in Combined Photothermal and Photodynamic Therapies against Cancer Using Carbon Nanomaterial Platforms for In Vivo Studies
by Lucas D. Dias, Hilde H. Buzzá, Mirian D. Stringasci and Vanderlei S. Bagnato
Photochem 2021, 1(3), 434-447; https://doi.org/10.3390/photochem1030026 - 21 Oct 2021
Cited by 18 | Viewed by 2580
Abstract
Cancer is considered one of the major public health problems worldwide. Among the therapeutic approaches investigated and used so far, the combined use of photothermal (PTT) and photodynamic (PDT) therapies have shown promising results for in vivo studies. The mechanisms of actions of [...] Read more.
Cancer is considered one of the major public health problems worldwide. Among the therapeutic approaches investigated and used so far, the combined use of photothermal (PTT) and photodynamic (PDT) therapies have shown promising results for in vivo studies. The mechanisms of actions of both therapies are based on use of a chemical entity and a source light with an appropriate wavelength, and, in PDTs case, also molecular oxygen (O2). Moreover, the combined use of PTT and PDT may present a synergic effect on the elimination of solid tumor and metastasis. Herein, we review the past 5 years (2016–2020) regarding the combined use of PTT and PDT and carbon nanomaterial platforms as photosensitizers and photothermal agents against cancer (in vivo evaluation). We intend to highlight the most important and illustrative examples for this period. Additionally, we report the mechanisms of action of PTT and PTT and the general physical/chemical properties of carbon nanomaterial platforms used for this therapeutic approach. Full article
(This article belongs to the Special Issue Advanced Research in Photothermal Therapy)
Show Figures

Figure 1

23 pages, 5582 KiB  
Review
A Brief History of Photoactive Interlocked Systems Assembled by Transition Metal Template Synthesis
by Vitor H. Rigolin, Liniquer A. Fontana and Jackson D. Megiatto, Junior
Photochem 2021, 1(3), 411-433; https://doi.org/10.3390/photochem1030025 - 21 Oct 2021
Viewed by 2492
Abstract
More than three decades of research efforts have yielded powerful methodologies based on transition metal template-directed syntheses for the assembly of a huge number of interlocked systems, molecular knots, machines and synthesizers. Such template techniques have been applied in the preparation of mechanically [...] Read more.
More than three decades of research efforts have yielded powerful methodologies based on transition metal template-directed syntheses for the assembly of a huge number of interlocked systems, molecular knots, machines and synthesizers. Such template techniques have been applied in the preparation of mechanically linked electron donor–acceptor artificial photosynthetic models. Consequently, synthetic challenging photoactive rotaxanes and catenanes have been reported, in which the chromophores are not covalently linked but are still associated with undergoing sequential energy (EnT) and electron transfer (ET) processes upon photoexcitation. Many interlocked photosynthetic models produce highly energetic, but still long-living charge separated states (CSS). The present work describes in a historical perspective some key advances in the field of photoactive interlocked systems assembled by transition metal template techniques, which illustrate the usefulness of rotaxanes and catenanes as molecular scaffolds to organize electron donor–acceptor groups. The effects of molecular dynamics, molecular topology, as well as the role of the transition metal ion used as template species, on the thermodynamic and kinetic parameters of the photoinduced energy and electron transfer processes in the interlocked systems are also discussed. Full article
Show Figures

Figure 1

40 pages, 6780 KiB  
Review
Nitrogen Doped Titanium Dioxide (N-TiO2): Synopsis of Synthesis Methodologies, Doping Mechanisms, Property Evaluation and Visible Light Photocatalytic Applications
by Thillai Sivakumar Natarajan, Velusamy Mozhiarasi and Rajesh J. Tayade
Photochem 2021, 1(3), 371-410; https://doi.org/10.3390/photochem1030024 - 18 Oct 2021
Cited by 38 | Viewed by 5778
Abstract
Titanium dioxide (TiO2) is one of the stable and potential metal oxide semiconductor nanomaterials with flexible properties which allows them to be used in a variety of applications (i.e., environmental remediation, energy storage and production, and also as a pigment in [...] Read more.
Titanium dioxide (TiO2) is one of the stable and potential metal oxide semiconductor nanomaterials with flexible properties which allows them to be used in a variety of applications (i.e., environmental remediation, energy storage and production, and also as a pigment in personal care products, etc.). However, its low surface area, poor adsorption capacity and high bandgap energy (~3.2 eV) prevents its full potency. Especially, TiO2 with high bandgap (~3.2 eV) reduces its visible light absorption capacity and catalytic efficiency. Various modification processes (i.e., metal and non-metal doping, composite materials (mixed metal oxide, high surface area adsorbents), and dye sensitization etc.) have been accomplished for stimulating the characteristics of TiO2 and the associated catalytic efficiency. Among the modifications, the non-metal doping process in TiO2, specifically nitrogen doping, is one of the efficient dopants for enhancing the photocatalytic efficiency of TiO2 in the presence of visible light irradiation. However, the morphology of TiO2, structural changes in TiO2 during N-doping, properties (e.g., morphology and electronic) of N-doped TiO2 and also reaction operational parameters (e.g., doping concentration) hold a greater impact for enhancing the photocatalytic properties of TiO2 either positively or negatively. Furthermore, the synthesis methodologies have a major influence on the synthesis of stable N-TiO2 with pronounced photocatalytic efficiencies. Nevertheless, the methodologies for highly stable N-TiO2 synthesis, properties evaluation and their correlation with photocatalytic efficiencies are still not appropriately stabilized to accomplish the commercial utilization of N-TiO2. Therefore, this review article focuses on the synopsis of various synthesis methodologies and either their efficiencies or inefficiencies, the mechanism involved in the doping processes, changes in the structural, electronic and morphological properties observed due to the N-doping along with the photocatalytic capacity. Furthermore, the opportunities, challenges and future requirements linked to the development of durable N-doped TiO2-based semiconductor nanomaterials for efficient catalytic performance is also represented. Full article
(This article belongs to the Special Issue Synthesis and Application of Titania (TiO2))
Show Figures

Figure 1

13 pages, 5949 KiB  
Article
g-C3N4/MoS2 Heterojunction for Photocatalytic Removal of Phenol and Cr(VI)
by Ilaeira Rapti, Feidias Bairamis and Ioannis Konstantinou
Photochem 2021, 1(3), 358-370; https://doi.org/10.3390/photochem1030023 - 15 Oct 2021
Cited by 16 | Viewed by 2876
Abstract
In this study, molybdenum disulfide (MoS2) decorated on graphitic carbon nitride (g-C3N4) heterostructure catalysts at various weight ratios (0.5%, 1%, 3%, 10%, w/w) were successfully prepared via a two-step hydrothermal synthesis preparation method. The [...] Read more.
In this study, molybdenum disulfide (MoS2) decorated on graphitic carbon nitride (g-C3N4) heterostructure catalysts at various weight ratios (0.5%, 1%, 3%, 10%, w/w) were successfully prepared via a two-step hydrothermal synthesis preparation method. The properties of the synthesized materials were studied by X-ray diffraction (XRD), attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FT-IR), UV–Vis diffuse reflection spectroscopy (DRS), scanning electron microscopy (SEM) and N2 porosimetry. MoS2 was successfully loaded on the g-C3N4 forming heterojunction composite materials. N2 porosimetry results showed mesoporous materials, with surface areas up to 93.7 m2g−1, while determined band gaps ranging between 1.31 and 2.66 eV showed absorption over a wide band of solar light. The photocatalytic performance was evaluated towards phenol oxidation and of Cr(VI) reduction in single and binary systems under simulated sunlight irradiation. The optimum mass loading ratio of MoS2 in g-C3N4 was 1%, showing higher photocatalytic activity under simulated solar light in comparison with bare g-C3N4 and MoS2 for both oxidation and reduction processes. Based on scavenging experiments a type-II photocatalytic mechanism is proposed. Finally, the catalysts presented satisfactory stability (7.8% loss) within three catalytic cycles. Such composite materials can receive further applications as well as energy conversion. Full article
Show Figures

Graphical abstract

13 pages, 7979 KiB  
Article
Electrospun Carbon Nanofibers Decorated with Ag3PO4 Nanoparticles: Visible-Light-Driven Photocatalyst for the Photodegradation of Methylene Blue
by Gopal Panthi and Mira Park
Photochem 2021, 1(3), 345-357; https://doi.org/10.3390/photochem1030022 - 10 Oct 2021
Cited by 5 | Viewed by 3325
Abstract
For the first time, heterostructures of electrospun carbon nanofibers decorated with Ag3PO4 nanoparticles (Ag3PO4/CNFs) were successfully fabricated by the combination of simple and versatile electrospinning technique followed by carbonization and incorporation of Ag3PO4 [...] Read more.
For the first time, heterostructures of electrospun carbon nanofibers decorated with Ag3PO4 nanoparticles (Ag3PO4/CNFs) were successfully fabricated by the combination of simple and versatile electrospinning technique followed by carbonization and incorporation of Ag3PO4 nanoparticles via colloidal and precipitation synthesis approaches. The as-fabricated heterostructures were characterized by FESEM with EDS, XRD, TEM with HRTEM, FTIR and UV-vis diffuse reflectance spectroscopy. Experimental results revealed that the heterostructure obtained by colloidal synthesis approach (Ag3PO4/CNFs-1) was decorated with small-sized (~20 nm) and uniformly distributed Ag3PO4 nanoparticles on the surface of CNFs without any evident agglomeration, while in the heterostructure obtained by the precipitation synthesis approach (Ag3PO4/CNFs-2), CNFs were decorated with agglomerated and bigger-sized Ag3PO4 nanoparticles. The visible-light-driven photocatalytic investigation signified that the Ag3PO4/CNFs-1 heterostructure can exhibit higher performance towards the photodegradation of MB dye solution compared to the Ag3PO4/CNFs-2 heterostructure, which could be attributed to the synergistic effect between the uniformity and small size of Ag3PO4 nanoparticles and CNFs that can serve as a conductivity network to prevent the recombination of charge carriers. Moreover, the mechanism of the photocatalytic activity as-prepared heterostructure is proposed. Full article
Show Figures

Figure 1

15 pages, 1912 KiB  
Review
Catalytic Composite Systems Based on N-Doped TiO2/Polymeric Materials for Visible-Light-Driven Pollutant Degradation: A Mini Review
by Olga Sacco, Vincenzo Venditto, Stefania Pragliola and Vincenzo Vaiano
Photochem 2021, 1(3), 330-344; https://doi.org/10.3390/photochem1030021 - 01 Oct 2021
Cited by 4 | Viewed by 2353
Abstract
This mini review summarizes the preparation and testing of polymeric composites with a N-doped TiO2 photocatalyst to effectively design a photocatalytic system for water pollutant degradation under visible light. In detail, the various N-doped TiO2/polymer composites reported in the literature [...] Read more.
This mini review summarizes the preparation and testing of polymeric composites with a N-doped TiO2 photocatalyst to effectively design a photocatalytic system for water pollutant degradation under visible light. In detail, the various N-doped TiO2/polymer composites reported in the literature are briefly discussed along with some examples dealing with the use of N-doped TiO2 particles, both supported on the external surface of polymers and dispersed within the structure of visible-light-transparent polymeric aerogels. Finally, the scope for future works and challenges for the commercialization of such materials are highlighted. Full article
(This article belongs to the Special Issue Synthesis and Application of Titania (TiO2))
Show Figures

Figure 1

11 pages, 2491 KiB  
Article
Structural and Optical Properties of Bi12NiO19 Sillenite Crystals: Application for the Removal of Basic Blue 41 from Wastewater
by Billal Brahimi, Hamza Kenfoud, Yasmine Benrighi and Oussama Baaloudj
Photochem 2021, 1(3), 319-329; https://doi.org/10.3390/photochem1030020 - 27 Sep 2021
Cited by 10 | Viewed by 2750
Abstract
This article covers the structural and optical property analysis of the sillenite Bi12NiO19 (BNO) in order to characterize a new catalyst that could be used for environmental applications. BNO crystals were produced by the combustion method using Polyvinylpyrrolidone as a [...] Read more.
This article covers the structural and optical property analysis of the sillenite Bi12NiO19 (BNO) in order to characterize a new catalyst that could be used for environmental applications. BNO crystals were produced by the combustion method using Polyvinylpyrrolidone as a combustion reagent. Different approaches were used to characterize the resulting catalyst. Starting with X-ray diffraction (XRD), the structure was refined from XRD data using the Rietveld method and then the structural form of this sillenite was illustrated for the first time. This catalyst has a space group of I23 with a lattice parameter of a = 10.24 Å. In addition, the special surface area (SSA) of BNO was determined by the Brunauer-Emmett-Teller (BET) method. It was found in the range between 14.56 and 20.56 cm2·g−1. Then, the morphology of the nanoparticles was visualized by Scanning Electron Microscope (SEM). For the optical properties of BNO, UV-VIS diffusion reflectance spectroscopy (DRS) was used, and a 2.1 eV optical bandgap was discovered. This sillenite′s narrow bandgap makes it an effective catalyst for environmental applications. The photocatalytic performance of the synthesized Bi12NiO19 was examined for the degradation of Basic blue 41. The degradation efficiency of BB41 achieved 98% within just 180 min at pH ~9 and with a catalyst dose of 1 g/L under visible irradiation. The relevant reaction mechanism and pathways were also proposed in this work. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop