Journal Description
Photochem
Photochem
is an international, peer-reviewed, open access journal on photochemistry published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 16 days after submission; acceptance to publication is undertaken in 4.2 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Photochem is a companion journal of Molecules.
subject
Imprint Information
Open Access
ISSN: 2673-7256
Latest Articles
Effect of Benzophenone Type UV Filters on Photodegradation of Co-existing Sulfamethoxazole in Water
Photochem 2023, 3(2), 288-300; https://doi.org/10.3390/photochem3020017 - 01 Jun 2023
Abstract
Benzophenones (BPs) frequently occur in water environments, and they are able to both screen UV light and to sensitize reactive intermediate (RI) production. However, BPs have largely been overlooked as a background water component when studying photodegradation of co-existing organic micropollutants (OMPs). Therefore,
[...] Read more.
Benzophenones (BPs) frequently occur in water environments, and they are able to both screen UV light and to sensitize reactive intermediate (RI) production. However, BPs have largely been overlooked as a background water component when studying photodegradation of co-existing organic micropollutants (OMPs). Therefore, in this study, we investigated the influence of BP and its derivative oxybenzone (BP3) on the degradation of the co-existing model OMP sulfamethoxazole (SMX). A series of photodegradation experiments were conducted covering a range of BPs concentrations in μg/L levels, and the degradation of 1.00 μM of SMX was studied. The addition of BP at 0.10 μM, 0.25 μM, and 0.30 μM, and BP3 at 0.10 μM and 0.25 μM, significantly increased the first order degradation rate constant of 1.00 μM of SMX (kobs(BP)) by 36.2%, 50.0%, 7.3%, 31.5%, and 36.2% respectively, compared to that in the absence of any BPs. The maximum indirect photodegradation induced by BP and BP3 reached 33.8% and 27.7%, respectively, as a percentage of the observed SMX degradation rate at the [BPs]/[SMX] ratio of 0.25. In general, triplet excited dissolved organic matter (3SMX*, 3BP*, and 3BP3*) played the major role in the photosensitizing ability of BPs. The results further implied that the increase of SMX degradation at the molar ratio of 0.25 was possibly due to 3BP* for the mixture of SMX and BP. Overall, this study revealed the sensitizing ability of BP and BP3 on the co-existing OMP, SMX, in water for the first time. Our findings can be applied to other BP type UV filters which are similar to BP and PB3 in molecular structure.
Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry II)
►
Show Figures
Open AccessArticle
Synthesis and Characterization of New Tetradentate N2O2-Based Schiff’s Base Cu (II) Complexes for Dye Photodegradation
by
, , , , , , , and
Photochem 2023, 3(2), 274-287; https://doi.org/10.3390/photochem3020016 - 11 May 2023
Abstract
We have reported tetradentate ligands (salophen) coordinated with N and O atoms that led to the Cu (II) complexes. These Cu (II) complexes (C-1 and C-2) were firstly established by using elemental analysis and confirmed by mass spectra. At the same time, the
[...] Read more.
We have reported tetradentate ligands (salophen) coordinated with N and O atoms that led to the Cu (II) complexes. These Cu (II) complexes (C-1 and C-2) were firstly established by using elemental analysis and confirmed by mass spectra. At the same time, the characterization of C-1 and C-2 complexes is performed by using several spectroscopic methods and morphological analysis. The bandgap values of the C-1 and C-2 complexes are evaluated with UV-vis DRS spectra. The PL spectral data and photocurrent curves clearly indicated the small recombination rate of the hole–electron pair. The synthesized C-1 and C-2 complexes’ photocatalytic properties were examined for the degradation of cationic dyes such as methylene blue (MB λmax.= 654 nm) and methyl violet (MV λmax.= 590 nm) below visible-light action. The C-2 complex is more active than the C-1 complex because of its high photostability, small band-gap energy, and low recombination rate for hole–electron pair separation, and improved visible-light character, which encourages the generation of hydroxyl radical species throughout the photodegradation process. Scavenger probes were used to identify the dynamic species for the photodegradation of dyes, and a mechanism investigation was established.
Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry II)
►▼
Show Figures

Figure 1
Open AccessTutorial
Photophysical Properties of Anthracene Derivatives
Photochem 2023, 3(2), 227-273; https://doi.org/10.3390/photochem3020015 - 04 May 2023
Abstract
►▼
Show Figures
In this tutorial review, we intend to provide the reader with a comprehensive introduction to the photophysical properties of organic compounds with a specific focus on anthracene and its derivatives. Anthracene-based building blocks have attracted the attention of chemists due to their intrinsic
[...] Read more.
In this tutorial review, we intend to provide the reader with a comprehensive introduction to the photophysical properties of organic compounds with a specific focus on anthracene and its derivatives. Anthracene-based building blocks have attracted the attention of chemists due to their intrinsic luminescent properties. A deep understanding of their interaction with light, including the mechanisms of emission (luminescence, i.e., fluorescence or phosphorescence) and quenching, is crucial to design and generate compounds with precise properties for further applications. Thus, the photophysical properties of different types of aggregates, both in the ground state (J- and H-type) and in the exited state (e.g., excimer, exciplex) will be discussed, finishing with a few examples of dyads and triads.
Full article

Graphical abstract
Open AccessArticle
Photodynamic Activity of Acridine Orange in Keratinocytes under Blue Light Irradiation
by
, , , and
Photochem 2023, 3(2), 209-226; https://doi.org/10.3390/photochem3020014 - 23 Apr 2023
Abstract
Acridine orange (AO) is a metachromatic fluorescent dye that stains various cellular compartments, specifically accumulating in acidic vacuoles (AVOs). AO is frequently used for cell and tissue staining (in vivo and in vitro), mainly because it marks different cellular compartments with different colors.
[...] Read more.
Acridine orange (AO) is a metachromatic fluorescent dye that stains various cellular compartments, specifically accumulating in acidic vacuoles (AVOs). AO is frequently used for cell and tissue staining (in vivo and in vitro), mainly because it marks different cellular compartments with different colors. However, AO also forms triplet excited states and its role as a photosensitizer is not yet completely understood. Human immortalized keratinocytes (HaCaT) were incubated for either 10 or 60 min with various concentrations (nanomolar range) of AO that were significantly lower than those typically used in staining protocols (micromolar). After incubation, the cells were irradiated with a 490 nm LED. As expected, cell viability (measured by MTT, NRU and crystal violet staining) decreased with the increase in AO concentration. Interestingly, at the same AO concentration, altering the incubation time with HaCaT substantially decreased the 50% lethal dose (LD50) from 300 to 150 nM. The photoinduced cell death correlated primarily with lysosomal disfunction, and the correlation was stronger for the 60 min AO incubation results. Furthermore, the longer incubation time favored monomers of AO and a distribution of the dye to intracellular sites other than lysosomes. Studies with mimetic systems indicated that monomers, which have higher yields of fluorescence emission and singlet oxygen generation, are favored in acidic environments, consistent with the more intense emission from cells submitted to the longer AO incubation period. Our results indicate that AO is an efficient PDT photosensitizer, with a photodynamic efficiency that is enhanced in acidic environments when multiple intracellular locations are targeted. Consequently, when using AO as a probe for live cell tracking and tissue staining, care must be taken to avoid excessive exposure to light to avoid undesirable photosensitized oxidation reactions in the tissue or cell under investigation.
Full article
(This article belongs to the Special Issue Advanced Topics in Photodynamic Therapy (PDT) and Photo Diagnosis (PD))
►▼
Show Figures

Graphical abstract
Open AccessArticle
Conformational-Dependent Photodissociation of Glycolic Acid in an Argon Matrix
by
, , , , , and
Photochem 2023, 3(2), 197-208; https://doi.org/10.3390/photochem3020013 - 31 Mar 2023
Abstract
Ultraviolet-induced photodissociation and photo-isomerization of the three most stable conformers (SSC, GAC, and AAT) of glycolic acid are investigated in a low-temperature solid argon matrix using FTIR spectroscopy and employing laser radiation with wavelengths of 212 nm, 226 nm, and 230 nm. The
[...] Read more.
Ultraviolet-induced photodissociation and photo-isomerization of the three most stable conformers (SSC, GAC, and AAT) of glycolic acid are investigated in a low-temperature solid argon matrix using FTIR spectroscopy and employing laser radiation with wavelengths of 212 nm, 226 nm, and 230 nm. The present work broadens the wavelength range of photochemical studies of glycolic acid, thus extending the understanding of the overall photochemistry of the compound. The proposed kinetic model for the photodissociation of glycolic acid proceeds from the lowest energy conformer (SSC). The model suggests that ultraviolet light induces isomerization only between the SSC and GAC conformers and between the SSC and AAT conformers. The relative reaction rate coefficients are reported for all proposed reactions. These results suggest that the direct photodissociation of GAC and AAT conformer does not occur in an argon matrix. The main photodissociation channel via the SSC conformer produces formaldehyde–water complexes. The proposed photodissociation mechanism emphasizes that the conformers’ relative abundancies can significantly affect the photodissociation rate of the molecule. For example, in the case of high relative GAC and AAT concentrations, the ultraviolet photodissociation of glycolic acid requires the proceeding photo-isomerization of GAC and AAT to SSC.
Full article
(This article belongs to the Special Issue Photochemistry of Organic Molecules and of Matrix-Isolated Reactive Intermediates: Themed Issue Honoring Professor Rui Fausto for His Contributions to the Field)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Facile Synthesis, Characterization, and Photocatalytic Performance of BiOF/BiFeO3 Hybrid Heterojunction for Benzylamine Coupling under Simulated Light Irradiation
by
, , , , , , , and
Photochem 2023, 3(1), 187-196; https://doi.org/10.3390/photochem3010012 - 21 Mar 2023
Abstract
Under simulated light irradiation, the aerobic oxidation of benzylamine to N,N-benzylidenebenzylamine was carried out as a model reaction to investigate the photocatalytic activity of a hydrothermally prepared composite based on BiOF and BiFeO3 materials. The prepared photocatalysts were characterized
[...] Read more.
Under simulated light irradiation, the aerobic oxidation of benzylamine to N,N-benzylidenebenzylamine was carried out as a model reaction to investigate the photocatalytic activity of a hydrothermally prepared composite based on BiOF and BiFeO3 materials. The prepared photocatalysts were characterized using several spectroscopic techniques, such as powder X-ray diffraction (PXRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). Band gap analysis showed that the composite exhibits a band gap that lies in the UV region (3.5 eV). Nonetheless, pristine BiOF and BiFeO3 exhibited band gaps of 3.8 eV and 2.15 eV, respectively. N,N-benzylidenebenzylamine was selectively achieved with a high conversion yield of ~80% under atmospheric conditions in which the product was confirmed using 1H-NMR, 13C-NMR, and FTIR spectroscopic techniques. Various control experiments were conducted to further confirm the enhanced photocatalytic performance of the reported composite.
Full article
(This article belongs to the Special Issue Visible Light Active Photocatalysts for Environmental Remediation and Organic Synthesis II)
►▼
Show Figures

Figure 1
Open AccessArticle
Water-Soluble Dicationic Deuteroporphyrin Derivative for Antimicrobial PDT: Singlet Oxygen Generation, Passive Carrier Interaction and Nosocomial Bacterial Strains Photoinactivation
by
, , , , and
Photochem 2023, 3(1), 171-186; https://doi.org/10.3390/photochem3010011 - 11 Mar 2023
Abstract
►▼
Show Figures
Multidrug resistance of pathogenic microflora is a serious threat to the modern community looking for new approaches to treating superinfections. In this sense, antimicrobial photodynamic therapy (aPDT) is an effective and safe technique considered to be a promising alternative or an important supplement
[...] Read more.
Multidrug resistance of pathogenic microflora is a serious threat to the modern community looking for new approaches to treating superinfections. In this sense, antimicrobial photodynamic therapy (aPDT) is an effective and safe technique considered to be a promising alternative or an important supplement to the traditional clinically applied methods for inactivating antibiotic resistant pathogens. Macroheterocyclic photosensitizers (PS) of three generations are proposed for clinical practice. They are known as the key compounds for PDT able to be localized selectively in microbial cells and to be activated with the red light producing toxic reactive oxygen species (ROS). However, these neutral and anionic PSs possess low affinity towards the outer lipopolysaccharide membrane of Gram-negative bacteria and, consequently, poor ability to kill these pathogens under irradiation. In contrast, cationic PSs containing one or more charged groups, especially those bound to an appropriate carrier, provide efficient inactivation of microorganisms. In this paper, we focus on the study of photophysics, aggregation and photoinduced antimicrobial activity of the water-soluble derivative of deuteroporphyrin-IX, a blood group porphyrin, bearing two cationic trialkylammonium fragments. This potential photosensitizing agent is found to generate singlet oxygen in a non-polar environment and forms stable nano-sized molecular complexes with passive non-ionic carrier Tween 80, localizing in an aqueous surfactant solution as a non-aggregated form in the surface micellar layer. Two different modes of PS/Tween 80 binding characterized by their own stability constants and interaction stoichiometry are observed. Microbiological experiments clearly demonstrate that the increased permeability of the outer bacterial membrane caused by the application of the intramicellar form of the photosensitizer or addition of some potentiation agents leads to pronounced light phototoxicity of the pigment against antibiotic-resistant nosocomial strains of Gram-negative bacterial pathogens.
Full article

Graphical abstract
Open AccessArticle
Insights into the Machine Learning Predictions of the Optical Response of Plasmon@Semiconductor Core-Shell Nanocylinders
by
and
Photochem 2023, 3(1), 155-170; https://doi.org/10.3390/photochem3010010 - 02 Mar 2023
Abstract
►▼
Show Figures
The application domain of deep learning (DL) has been extended into the realm of nanomaterials, photochemistry, and optoelectronics research. Here, we used the combination of a computer vision technique, namely convolutional neural network (CNN), with multilayer perceptron (MLP) to obtain the far-field optical
[...] Read more.
The application domain of deep learning (DL) has been extended into the realm of nanomaterials, photochemistry, and optoelectronics research. Here, we used the combination of a computer vision technique, namely convolutional neural network (CNN), with multilayer perceptron (MLP) to obtain the far-field optical response at normal incidence (along cylinder axis) of concentric cylindrical plasmonic metastructures such as nanorods and nanotubes. Nanotubes of Si, Ge, and TiO2 coated on either their inner wall or both their inner and outer walls with a plasmonic noble metal (Au or Ag) were thus modeled. A combination of a CNN and MLP was designed to accept the cross-sectional images of cylindrical plasmonic core-shell nanomaterials as input and rapidly generate their optical response. In addition, we addressed an issue related to DL methods, namely explainability. We probed deeper into these networks’ architecture to explain how the optimized network could predict the final results. Our results suggest that the DL network learns the underlying physics governing the optical response of plasmonic core-shell nanocylinders, which in turn builds trust in the use of DL methods in materials science and optoelectronics.
Full article

Figure 1
Open AccessArticle
Linear and Nonlinear Optical Properties of Quadrupolar Bithiophenes and Cyclopentadithiophenes as Fluorescent Oxygen Photosensitizers
by
, , , , , , , , , and
Photochem 2023, 3(1), 127-154; https://doi.org/10.3390/photochem3010009 - 20 Feb 2023
Abstract
►▼
Show Figures
The linear and nonlinear optical properties of two quadrupolar bithiophenes and two quadrupolar cyclopentadithiophenes have been investigated. At the 5,5′ positions of the central bi/dithiophene units, the molecules possess 1,4-phenylalkynyl groups that bear either electron-donating (NPh2) or electron-withdrawing (SO2CF
[...] Read more.
The linear and nonlinear optical properties of two quadrupolar bithiophenes and two quadrupolar cyclopentadithiophenes have been investigated. At the 5,5′ positions of the central bi/dithiophene units, the molecules possess 1,4-phenylalkynyl groups that bear either electron-donating (NPh2) or electron-withdrawing (SO2CF3) groups. The optical properties were experimentally studied and modelled via quantum chemistry computations of key configurations and conformations. All the compounds show good light harvesting efficiency due to their strong absorption in the visible range. These fluorescent compounds are also good two-photon absorbers in the NIR range that can photosensitize oxygen in toluene. DFT calculations reveal that the mixtures of conformers in a solution show similar linear optical properties. TD-DFT calculations reproduce the experimental spectroscopic data fairly well, including vibronic couplings in the fluorescence spectra. The lowest excited state for two-photon absorption corresponds to the S2 state. The roles of the SO2CF3 and NPh2 terminal groups on the nonlinear response were analyzed for possible bio-oriented applications, with the cyclopentadithiophenes showing the most promising figures of merit.
Full article

Figure 1
Open AccessArticle
Pyridine-Based Small-Molecule Fluorescent Probes as Optical Sensors for Benzene and Gasoline Adulteration
by
, , , , , and
Photochem 2023, 3(1), 109-126; https://doi.org/10.3390/photochem3010008 - 17 Feb 2023
Abstract
►▼
Show Figures
Here we present simple fluorophores based on the pyridine core, obtained with straightforward synthetic methodologies. These compounds present in solution absorption maxima in the UV region and fluorescence emission of between 300 and 450 nm, depending on the solvent and chemical structure of
[...] Read more.
Here we present simple fluorophores based on the pyridine core, obtained with straightforward synthetic methodologies. These compounds present in solution absorption maxima in the UV region and fluorescence emission of between 300 and 450 nm, depending on the solvent and chemical structure of the fluorophore. The nature of the solvent was shown to play a fundamental role in their excite-state deactivation, which allowed successful exploration of these compounds as optical sensors for benzene and fuel adulteration in gasoline. In ethanolic solution, upon the addition of benzene, in general the fluorophores presented fluorescence quenching, where a linear correlation between the emission intensity and the amount of benzene (quencher) was observed. In addition, the application of an optical sensor for the detection of fuel adulteration in commercial standard and premium gasoline was successfully presented and discussed. Theoretical calculations were also applied to better understand the solvent–fluorophore interactions.
Full article

Graphical abstract
Open AccessArticle
The Fate of Sulfur Radical Cation of N-Acetyl-Methionine: Deprotonation vs. Decarboxylation
Photochem 2023, 3(1), 98-108; https://doi.org/10.3390/photochem3010007 - 05 Feb 2023
Abstract
►▼
Show Figures
In the present study, we investigated the photooxidation of the biomimetic model of C-terminal methionine, N-Acetyl-Methionine (N-Ac-Met), sensitized by a 3-Carboxybenzophenone (3CB) excited triplet in neutral and basic aqueous solutions. The short-lived transient species that formed in the reaction were identified and quantified
[...] Read more.
In the present study, we investigated the photooxidation of the biomimetic model of C-terminal methionine, N-Acetyl-Methionine (N-Ac-Met), sensitized by a 3-Carboxybenzophenone (3CB) excited triplet in neutral and basic aqueous solutions. The short-lived transient species that formed in the reaction were identified and quantified by laser flash photolysis and the final stable products were analyzed using liquid chromatography coupled with high-resolution mass spectrometry (LC-MS) and tandem mass spectrometry (MSMS). Based on these complementary methods, it was possible to calculate the quantum yields of both competing reactions, and the deprotonation was found to be favored over decarboxylation (for neutral pH: ϕ-H = 0.23 vs. ϕ-CO2 = 0.09, for basic pH: ϕ-H = 0.23 vs. ϕ-CO2 = 0.05). Findings on such a model system, which can possibly mimic the complex protein environment, are important in understanding complicated biological systems, for example, the studied compound, N-Ac-Met, can, to some extent, mimic the methionine in the C-terminal domain of β-amyloid, which is thought to be connected with the pathogenesis of Alzheimer’s disease.
Full article

Graphical abstract
Open AccessArticle
Action of Photodynamic Therapy at Low Fluence in 9 L/lacZ Cells after Interaction with Chlorins
by
, , , , and
Photochem 2023, 3(1), 82-97; https://doi.org/10.3390/photochem3010006 - 02 Feb 2023
Abstract
Gliosarcoma (GS) is a primary malignant neoplasm of the central nervous system, treated with an unfavorable prognosis with surgery, radiotherapy, and chemotherapy. The treatment for GS consists of surgical resection, almost always accompanied by radiotherapy and/or chemotherapy, given the invasive behavior of the
[...] Read more.
Gliosarcoma (GS) is a primary malignant neoplasm of the central nervous system, treated with an unfavorable prognosis with surgery, radiotherapy, and chemotherapy. The treatment for GS consists of surgical resection, almost always accompanied by radiotherapy and/or chemotherapy, given the invasive behavior of the tumor. Photodynamic Therapy (PDT) is studied as an alternative method that combines light, a photosensitizer (PS), and molecular oxygen. This study aimed to compare the effects of PDT using the photosensitizers Fotoenticine (FTC) and Photodithazine (PDZ) at low concentrations and fluences. For this study, 9 L/lacZ cells, concentrations of 1.55 µg mL−1, 12.5 µg mL−1, and 50 µg mL−1 of chlorins and fluences of 1, 5, and 10 J/cm2 were used. A test was also carried out with Trypan Blue in L929 cells at the mentioned concentrations at 5 J/cm2. Both chlorins were internalized in the cytoplasm, with a significant reduction in viability (>95%) in almost all groups and altered cell adhesion and morphology after PDT. HSP70 expression decreased in both PS, while HSP27 increased only in PDT with FTC, and although there was a change in cell adhesion in the 9 L/LacZ lineage it was not observed in the L929 fibroblast lineage. Both chlorins were effective, highlighting the concentration of 50 µg mL−1 at the fluence of 5 J/cm2; according to the present study, the PDZ showed better results.
Full article
(This article belongs to the Special Issue Advanced Topics in Photodynamic Therapy (PDT) and Photo Diagnosis (PD))
►▼
Show Figures

Figure 1
Open AccessArticle
Spectroscopic and DFT Study of Alizarin Red S Complexes of Ga(III) in Semi-Aqueous Solution
Photochem 2023, 3(1), 61-81; https://doi.org/10.3390/photochem3010005 - 31 Jan 2023
Abstract
A combined spectroscopic and computational approach has been used to study in detail the complexation between Ga(III) and ARS in solution. The NMR results revealed the formation of four Ga(III)/ARS complexes, at pH 4, differing in their metal:ligand stoichiometries or configuration, and point
[...] Read more.
A combined spectroscopic and computational approach has been used to study in detail the complexation between Ga(III) and ARS in solution. The NMR results revealed the formation of four Ga(III)/ARS complexes, at pH 4, differing in their metal:ligand stoichiometries or configuration, and point to a coordination mode through the ligand positions C-1 and C-9. For equimolar metal:ligand solutions, a 1:1 [Ga(ARS)(H2O)4]+ complex was formed, while for 1:2 molar ratio solutions, a [Ga(ARS)2(H2O)2]− complex, in which the two ligands are magnetically equivalent, is proposed. Based on DFT calculations, it was determined that this is a centrosymmetric structure with the ligands in an anti configuration. For solutions with a 1:3 molar ratio, two isomeric [Ga(ARS)3]3− complexes were detected by NMR, in which the ligands have a mer and a fac configuration around the metal centre. The DFT calculations provided structural details on the complexes and support the proposal of a 1,9 coordination mode. The infrared spectroscopy results, together with the calculation of the infrared spectra for the theoretically proposed structures, give further support to the conclusions above. Changes in the UV/vis absorption and fluorescence spectra of the ligand upon complexation revealed that ARS is a highly sensitive fluorescent probe for the detection of Ga(III).
Full article
(This article belongs to the Special Issue Photochemistry of Organic Molecules and of Matrix-Isolated Reactive Intermediates: Themed Issue Honoring Professor Rui Fausto for His Contributions to the Field)
►▼
Show Figures

Figure 1
Open AccessEditorial
Acknowledgment to the Reviewers of Photochem in 2022
Photochem 2023, 3(1), 59-60; https://doi.org/10.3390/photochem3010004 - 20 Jan 2023
Abstract
High-quality academic publishing is built on rigorous peer review [...]
Full article
Open AccessArticle
Bismuth Vanadate-Nanostructured Graphite Electrodes for Rhodamine B Photoelectrochemical Degradation
by
, , , , , , , , , and
Photochem 2023, 3(1), 38-58; https://doi.org/10.3390/photochem3010003 - 13 Jan 2023
Abstract
Electrocatalysis is a promising way to treat water contaminated by harmful organic compounds. The combination of nanoparticles supported on a conductive substrate allows degradation to occur under less energetic conditions. This work evaluated the effect of deposition of bismuth vanadate (BVO) particles on
[...] Read more.
Electrocatalysis is a promising way to treat water contaminated by harmful organic compounds. The combination of nanoparticles supported on a conductive substrate allows degradation to occur under less energetic conditions. This work evaluated the effect of deposition of bismuth vanadate (BVO) particles on pencil-type graphite electrodes. BVO particles were obtained by ultrasonic irradiation with coprecipitation. Then, they were deposited on the surface of a graphite electrode by the impregnation method. A 23-design was used to optimize electrode fabrication. Matter Dispersion Spectroscopy (SEM/EDS), X-Ray Diffraction (XRD) and Dynamic Light Scattering (DLS) were used for characterization. Electrochemical characterization was performed by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The results confirmed the synthesis of BVO@C (BVO/graphite). Furthermore, BVO@C significantly increased the electroactive surface area of the electrode, decreased the electron transfer resistance, and significantly increased the electron transfer rate to a greater extent than the electrode without any modification. To prove that the performance of BVO@C is better than the pure electrode, photoelectrocatalysis (PEC) and electrocatalysis (EC) were performed in a rhodamine B (RhB) solution. The results showed that in 5 min of treatment with unmodified electrode, BVO@C EC system and BVO@C PEC system, there was degradation of 31.53%, 46.09% and 58.17% respectively, reaching 95%, 98% and 99.64%, respectively, in 30 min. The reaction rate constants were calculated and to be found k = 0.10272 m−1, k = 0.12221 m−1 and k= 0.15022 m−1 for the unmodified graphite, BVO@C EC System and BVO@C PEC system, respectively. These results demonstrate that the BVO@C electrodes are efficient for application in a wide range of treatments, including the treatment of organic pollutants.
Full article
(This article belongs to the Special Issue New Trends in Metal-Doped Photocatalytic Materials)
►▼
Show Figures

Figure 1
Open AccessReview
Cobalt Sulfide (Co9S8)-Based Materials with Different Dimensions: Properties, Preparation and Applications in Photo/Electric Catalysis and Energy Storage
Photochem 2023, 3(1), 15-37; https://doi.org/10.3390/photochem3010002 - 12 Jan 2023
Abstract
Due to their excellent properties and unique structures, transition metal sulfides play an important role in the development of efficient and stable photoelectric catalysts. In recent years, their potential applications have expanded from photoelectric catalysis to energy storage, especially as materials for key
[...] Read more.
Due to their excellent properties and unique structures, transition metal sulfides play an important role in the development of efficient and stable photoelectric catalysts. In recent years, their potential applications have expanded from photoelectric catalysis to energy storage, especially as materials for key components of electrochemical energy storage. As a typical multifunctional metal sulfide catalyst, Co9S8 is highly attractive due to its high conductivity, better stability, suitable band structure, enhanced performance and wide applications. A large number of studies have shown that strategically modified Co9S8-based materials have greater advantages in various applications compared with pure Co9S8. Therefore, this review will evaluate the physicochemical properties and the preparation of different dimensions of Co9S8-based materials, and the influence of different structures on the photoelectrochemical energy of materials will be described. In addition, the research progress regarding the evolution of hydrogen photocatalytic, electrocatalytic water splitting and various electrochemical energy storage materials will be emphasized. Finally, the challenges faced by Co9S8-based materials and the research directions for their future applications will be discussed.
Full article
(This article belongs to the Special Issue Advance in Photocatalysis in Asia)
►▼
Show Figures

Figure 1
Open AccessArticle
Fluorescence Quantum Yields and Lifetimes of Aqueous Natural Dye Extracted from Tradescantia pallida purpurea at Different Hydrogen Potentials
by
, , , , and
Photochem 2023, 3(1), 1-14; https://doi.org/10.3390/photochem3010001 - 03 Jan 2023
Abstract
►▼
Show Figures
In this work, we monitored the fluorescence quantum efficiency (η) and the fluorescence lifetime (τ) of natural dye extracts from the leaves of Tradescantia pallida purpurea. The natural dye was extracted from leaves in aqueous solutions as a function
[...] Read more.
In this work, we monitored the fluorescence quantum efficiency (η) and the fluorescence lifetime (τ) of natural dye extracts from the leaves of Tradescantia pallida purpurea. The natural dye was extracted from leaves in aqueous solutions as a function of the potential of hydrogen (pH). The η was determined from conical diffraction (CD) pattern measurements due to thermally-driven self-phase modulation. The fluorescence spectra and time-resolved fluorescence measurements corroborate the CD results, and the average η ≈ 0.28 and τ ≈ 3.1 ns values were obtained in the pH range 3.96–8.02. In addition, the extracted natural dye was tested as a possible colorimetric and/or fluorometric pH indicator in milk.
Full article

Graphical abstract
Open AccessReview
Structural Quasi-Isomerism in Au/Ag Nanoclusters
Photochem 2022, 2(4), 932-946; https://doi.org/10.3390/photochem2040060 - 05 Dec 2022
Abstract
►▼
Show Figures
Atomically precise metal nanoclusters are a new kind of nanomaterials that appeared in recent years; a pair of isomer nanoclusters have the same metal types, numbers of metal atoms, and surface-protected organic ligands but different metal atom arrangements. This article summarizes the structure
[...] Read more.
Atomically precise metal nanoclusters are a new kind of nanomaterials that appeared in recent years; a pair of isomer nanoclusters have the same metal types, numbers of metal atoms, and surface-protected organic ligands but different metal atom arrangements. This article summarizes the structure features of isomer nanoclusters and concentrates on synthesis methods that could lead to isomer structure. The pairs of isomer inorganic nanoclusters’ conversion to each other and their applications in catalyst and photoluminescence are also discussed. We found that the structure conversions are relevant to their stability. However, with the same molecule formulas, different atom arrangements significantly influence their performance in applications. Finally, the existing challenges and some personal perspectives for this novel field in the nano-science investigation are proposed. We hope this minireview can offer a reference for researchers interested in inorganic isomer nanoclusters.
Full article

Figure 1
Open AccessArticle
Effect of the Donor/Acceptor Size on the Rate of Photo-Induced Electron Transfer
Photochem 2022, 2(4), 918-931; https://doi.org/10.3390/photochem2040059 - 30 Nov 2022
Cited by 1
Abstract
The photo-induced electron transfer has been under intensive investigation for a few decades already, and a good understanding of the reaction was developed based on thorough study of the molecular donor–acceptor (DA) system. The recent shift to hybrid DA systems opens the question
[...] Read more.
The photo-induced electron transfer has been under intensive investigation for a few decades already, and a good understanding of the reaction was developed based on thorough study of the molecular donor–acceptor (DA) system. The recent shift to hybrid DA systems opens the question of transferring the knowledge to analyze and design these new materials. One of the apparent differences is the size increase of the donor or acceptor entities. The electronic wave functions of larger entities occupy a larger volume, but since these are still one-electron wave functions, their amplitudes are lower. A simple analysis proposed here demonstrates that this leads to roughly inverse third power dependence of the electron transfer rate constant on the donor or acceptor size, . This dependence can be observed upon switching from molecular to quantum dot donor in DA systems with a fullerene acceptor.
Full article
(This article belongs to the Special Issue A Themed Issue in Honor of Professor David I. Schuster's Great Contribution)
►▼
Show Figures

Figure 1
Open AccessArticle
Application of Zirconia/Alumina Composite Oxide Ceramics as Photocatalysts for Removal of 2,4,6-Trichlorophenol from Water
by
, , , , and
Photochem 2022, 2(4), 905-917; https://doi.org/10.3390/photochem2040058 - 28 Nov 2022
Cited by 1
Abstract
The mesoporous zirconia/alumina composites were synthesized via a sol–gel method, followed by heat treatment at 500 °C for 5 h. The effect of the ZrO2/Al2O3 ratio on the structural and textural properties of the obtained composites was explored.
[...] Read more.
The mesoporous zirconia/alumina composites were synthesized via a sol–gel method, followed by heat treatment at 500 °C for 5 h. The effect of the ZrO2/Al2O3 ratio on the structural and textural properties of the obtained composites was explored. Sorption analysis has confirmed that all samples have a mesoporous structure whose parameters (SBET, Vp and Dmax) strongly depend on the ZrO2/Al2O3 ratio. The XRD pattern of composites has shown that the addition of zirconia disrupts the crystallinity of alumina. The composites with higher zirconia content (50% ZrO2 and 67% ZrO2) are characterized by peaks related only to the zirconia phase. UV/Vis diffuse reflection spectra of all samples revealed that composites have more intensive absorption compared to pure oxides for wavelengths larger than 250 nm and similar band gaps. Photoluminescence measurements showed presence of defects in all samples, which are responsible for photocatalytic activity. All samples showed significant adsorption/photocatalytic efficacy for the removal/degradation of 2,4,6 -trichlorophenol (TCP). Results obtained using HPLC and TOC techniques showed that between 70 and 80% of the initial TCP concentration was removed/degraded after 4 h of illumination. These results were corelated with flat, conduction and valence band potentials of synthesized pure and binary oxides, calculated using Mott–Schottky plots.
Full article
(This article belongs to the Special Issue Visible Light Active Photocatalysts for Environmental Remediation and Organic Synthesis II)
►▼
Show Figures

Graphical abstract
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Catalysts, Materials, Nanomaterials, Photochem, Polymers
Photosensitive and Optical Materials
Topic Editors: Yung-Chung Chen, Jen-Shyang NiDeadline: 15 June 2023
Topic in
Catalysts, Materials, Molecules, Nanomaterials, Photochem
New Materials and Advanced Applications in Photocatalysis
Topic Editors: Jose L. Hueso, Ewa Kowalska, Zhishun WeiDeadline: 30 November 2023

Conferences
Special Issues
Special Issue in
Photochem
New Trends in Metal-Doped Photocatalytic Materials
Guest Editors: Marica Muscetta, Roberto Andreozzi, Danilo RussoDeadline: 15 July 2023
Special Issue in
Photochem
Feature Papers in Photochemistry II
Guest Editors: Vincenzo Vaiano, Rui Fausto, Marcelo GuzmanDeadline: 30 November 2023
Special Issue in
Photochem
Recent Advances in Doping Strategies for Semiconductor Photocatalyst Nanomaterials for Energy and Environmental Applications
Guest Editor: Jai PrakashDeadline: 31 December 2023