Next Issue
Volume 3, December
Previous Issue
Volume 3, June
 
 

J. Mol. Pathol., Volume 3, Issue 3 (September 2022) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
8 pages, 3448 KiB  
Brief Report
The Relationship between Mutations in Gene-Specific Domains of Salivary Fibronectin (cFn) and Dynamin-2 (Dynm-2) and the Development of Porphyromonas gingivalis-Initiated Periodontitis
by Elena A. Oleinik and Anna V. Goncharenko
J. Mol. Pathol. 2022, 3(3), 182-189; https://doi.org/10.3390/jmp3030015 - 08 Sep 2022
Cited by 1 | Viewed by 1481
Abstract
Periodontitis is a chronic inflammatory disease characterized by the destruction of the supporting structures of the teeth. Its high prevalence and negative effects on quality of life make it one of the current problems in dentistry. Porphyromonas gingivalis (P. gingivalis) is [...] Read more.
Periodontitis is a chronic inflammatory disease characterized by the destruction of the supporting structures of the teeth. Its high prevalence and negative effects on quality of life make it one of the current problems in dentistry. Porphyromonas gingivalis (P. gingivalis) is the predominant periodontal pathogen that expresses a number of virulence factors involved in the pathogenesis of periodontitis. P. gingivalis fimbriae are a critical factor in the interaction between the organism and the host tissue. They promote both bacterial adhesion and invasion into the target sites. Fimbriae are capable of binding to human saliva components, extracellular matrix proteins, and commensal bacteria, as well as firmly binding to the cellular integrin α5β1. After attachment to α5β1-integrin, P. gingivalis is captured by cellular pseudopodia, which makes invagination through an actin-mediated pathway possible. It has been proven that the invagination event also requires the participation of the host cell dynamin, actin fibers, microtubules and lipid rafts. Work has emerged investigating mutations in the proline-rich terminal domain (PRD) and their impact on disease development. Salivary antimicrobial peptides are early protective factors against microbial attack. Of great interest is fibronectin (FN) as the main competitor of P. gingivalis fimbriae. The FN can interact with cells in three different regions: the central cell-binding domain (CCBD), the COOH terminal heparin-binding domain (Hep2), and the type III connecting segment (IIICS), including the CS1 region (Yamada, 1991). CCBD is the major cell-adhesion domain of FN and contains an Arg–Gly–Asp (RGD) motif that is recognized by members of the cell adhesion receptor integrin family, including a5b1, which is the primary FN receptor in many cell types. The work focuses on identifying the relationship between the development of periodontitis and the presence of mutations in the adhesion domains of salivary proteins such as cellular fibronectin (cFN) and dynamin-2 (DYNM2). Full article
Show Figures

Figure 1

14 pages, 1395 KiB  
Review
Next Generation Digital Pathology: Emerging Trends and Measurement Challenges for Molecular Pathology
by Alex Dexter, Dimitrios Tsikritsis, Natalie A. Belsey, Spencer A. Thomas, Jenny Venton, Josephine Bunch and Marina Romanchikova
J. Mol. Pathol. 2022, 3(3), 168-181; https://doi.org/10.3390/jmp3030014 - 02 Sep 2022
Viewed by 5598
Abstract
Digital pathology is revolutionising the analysis of histological features and is becoming more and more widespread in both the clinic and research. Molecular pathology extends the tissue morphology information provided by conventional histopathology by providing spatially resolved molecular information to complement the structural [...] Read more.
Digital pathology is revolutionising the analysis of histological features and is becoming more and more widespread in both the clinic and research. Molecular pathology extends the tissue morphology information provided by conventional histopathology by providing spatially resolved molecular information to complement the structural information provided by histopathology. The multidimensional nature of the molecular data poses significant challenge for data processing, mining, and analysis. One of the key challenges faced by new and existing pathology practitioners is how to choose the most suitable molecular pathology technique for a given diagnosis. By providing a comparison of different methods, this narrative review aims to introduce the field of molecular pathology, providing a high-level overview of many different methods. Since each pixel of an image contains a wealth of molecular information, data processing in molecular pathology is more complex. The key data processing steps and variables, and their effect on the data, are also discussed. Full article
Show Figures

Figure 1

28 pages, 957 KiB  
Review
Insulinoma-Associated Protein 1 (INSM1): Diagnostic, Prognostic, and Therapeutic Use in Small Cell Lung Cancer
by Renato Rocha and Rui Henrique
J. Mol. Pathol. 2022, 3(3), 140-167; https://doi.org/10.3390/jmp3030013 - 05 Aug 2022
Viewed by 2420
Abstract
Small cell lung carcinoma (SCLC) is an aggressive and difficult to treat cancer. Although immunohistochemistry is not mandatory for a SCLC diagnosis, it might be required, especially in small samples. Insulinoma-associated protein 1 (INSM1) is expressed in endocrine and nervous tissues [...] Read more.
Small cell lung carcinoma (SCLC) is an aggressive and difficult to treat cancer. Although immunohistochemistry is not mandatory for a SCLC diagnosis, it might be required, especially in small samples. Insulinoma-associated protein 1 (INSM1) is expressed in endocrine and nervous tissues during embryogenesis, generally absent in adults and re-expressed in SCLC and other neuroendocrine neoplasms. Its high specificity propelled its use as diagnostic biomarker and an attractive therapeutic target. Herein, we aim to provide a systematic and critical review on the use of INSM1 for diagnosis, prognostication and the treatment of SCLC. An extensive bibliographic search was conducted in PubMed® focusing on articles published since 2015. According to the literature, INSM1 is a highly sensitive (75–100%) and specific (82–100%) neuroendocrine immunohistochemical marker for SCLC diagnosis. It can be used in histological and cytological samples. Although advantageous, its standalone use is currently not recommended. Studies correlating INSM1 expression and prognosis have disclosed contrasting results, although the expression seemed to entail a worse survival. Targeting INSM1 effectively suppressed SCLC growth either as a suicide gene therapy regulator or as an indirect target of molecular-targeted therapy. INSM1 represents a valuable biomarker for a SCLC diagnosis that additionally offers vast opportunities for the development of new prognostic and therapeutic strategies. Full article
Show Figures

Figure 1

15 pages, 1975 KiB  
Article
An Independent Assessment of a Commercial Clinical Interpretation Software Indicates That Software Can Mitigate Variation in Human Assessment
by Jennifer A. Fairley, Zandra C. Deans, Rebecca J. L. Treacy, Eilidh Grieg, Kathryn Bungartz, Ruth Burton, James Hayes and Sheryl K. Elkin
J. Mol. Pathol. 2022, 3(3), 125-139; https://doi.org/10.3390/jmp3030012 - 05 Jul 2022
Cited by 1 | Viewed by 4022
Abstract
Comprehensive next-generation sequencing (NGS) panels for cancer diagnostics create a bottleneck for interpretation. QIAGEN Clinical Insights Interpret One (QCI) is a clinical decision support software that supports molecular pathologists in the classification of oncology-related variants. This study compares variant assessments by QCI to [...] Read more.
Comprehensive next-generation sequencing (NGS) panels for cancer diagnostics create a bottleneck for interpretation. QIAGEN Clinical Insights Interpret One (QCI) is a clinical decision support software that supports molecular pathologists in the classification of oncology-related variants. This study compares variant assessments by QCI to assessments utilizing current laboratory methods. Eight laboratories were recruited by the external quality assessment organization GenQA. The laboratories submitted VCFs from sequencing studies performed on both hematological disorders and solid tumors for analysis by QCI and an independent laboratory. Results were compared and conflicts were resolved using a panel of experts. In total, 14/149 variants (9%) reported as Tier 1 or Tier 2 by either QCI or the submitting laboratory were found to be discordant after expert panel review. In contrast, 41/149 variants (28%) reflected discrepancy among human reviewers. The expert panel was unable to reach resolution on eight variants. QCI demonstrates high concordance in the classification of actionable mutations with independent laboratory methods and expert assessment. The rate of disagreement among laboratories and the expert panel was greater than the disagreement between QCI and expert assessment. Disagreement among experts highlights the subjectivity of classifying variants. The study demonstrates that QCI interpretation supports streamlining and standardization of NGS variant interpretation. Full article
Show Figures

Figure 1

10 pages, 1574 KiB  
Article
BRAF and MLH1 Analysis Algorithm for the Evaluation of Lynch Syndrome Risk in Colorectal Carcinoma Patients: Evidence-Based Data from the Analysis of 100 Consecutive Cases
by Thais Maloberti, Antonio De Leo, Viviana Sanza, Lidia Merlo, Michela Visani, Giorgia Acquaviva, Sara Coluccelli, Annalisa Altimari, Elisa Gruppioni, Stefano Zagnoni, Daniela Turchetti, Sara Miccoli, Michelangelo Fiorentino, Antonietta D’Errico, Dario de Biase and Giovanni Tallini
J. Mol. Pathol. 2022, 3(3), 115-124; https://doi.org/10.3390/jmp3030011 - 25 Jun 2022
Cited by 1 | Viewed by 3415
Abstract
Several causes may lead to CRC, either extrinsic (sporadic forms) or genetic (hereditary forms), such as Lynch syndrome (LS). Most sporadic deficient mismatch repair (dMMR) CRC cases are characterized by the methylation of the MLH1 promoter gene and/or BRAF gene mutations. Usually, the [...] Read more.
Several causes may lead to CRC, either extrinsic (sporadic forms) or genetic (hereditary forms), such as Lynch syndrome (LS). Most sporadic deficient mismatch repair (dMMR) CRC cases are characterized by the methylation of the MLH1 promoter gene and/or BRAF gene mutations. Usually, the first test performed is the mismatch repair deficiency analysis. If a tumor shows a dMMR, BRAF mutations and then the MLH1 promoter methylation status have to be assessed, according to the ACG/ASCO screening algorithm. In this study, 100 consecutive formalin-fixed and paraffin-embedded samples of dMMR CRC were analyzed for both BRAF mutations and MLH1 promoter methylation. A total of 47 (47%) samples were BRAF p.V600E mutated, while MLH1 promoter methylation was found in 77 cases (77.0%). The pipeline “BRAF-followed-by-MLH1-analysis” led to a total of 153 tests, while the sequence “MLH1-followed-by-BRAF-analysis” resulted in a total of 123 tests. This study highlights the importance of performing MLH1 analysis in LS screening of BRAF-WT specimens before addressing patients to genetic counseling. We show that MLH1 analysis performs better as a first-line test in the screening of patients with LS risk than first-line BRAF analysis. Our data indicate that analyzing MLH1 methylation as a first-line test is more cost-effective. Full article
(This article belongs to the Collection Feature Papers in Journal of Molecular Pathology)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop