# Application of Idealised Modelling and Data Analysis for Assessing the Compounding Effects of Sea Level Rise and Altered Riverine Inflows on Estuarine Tidal Dynamics

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

- Are data analysis techniques able to provide broad insights into the effects of SLR and varying river inflows on estuarine tidal dynamics?
- What are the dominant effects of SLR and altered riverine inflows on estuarine tidal properties?
- Which estuary types and locations are most vulnerable to changes in mean sea level and river inflows?

## 2. Methods

#### 2.1. Numerical Modelling

_{L}= 160 km (weaker convergence) and C

_{L}= 80 km (stronger convergence) (Figure 1). Combinations of a wide range of estuarine parameters were investigated comprising estuary length (L = 40, 80, and 160 km), uniformly distributed Manning’s roughness (n = 0.015 and 0.03 s/m

^{1/3}), tidal range at the mouth (TR

_{0}= 0.5, 1, and 4 m, representing microtidal, mesotidal, and lower boundaries of macrotidal coastal conditions, respectively), river inflow (Q) over tidal prism (TP) ratio (Q/TP = 0%, 1%, 5%, and 10%), and SLR = 0 and 1 m. The width at the mouth (B

_{0}= 1000 m) and water depth (h = 5 m) were kept constant, and for all cases, sinusoidal M2 tides (as the dominant semi-diurnal tidal constituent along the majority of coastlines and a proxy for tidal range) were applied at the mouth with a period of T = 12.42 h. Initially, no river inflow was considered (Q/TP = 0%) to identify the tidal prism TP (i.e., the volume of water entering an estuary over a flood cycle). Using the identified TP, constant river inflows (Q/TP = 1%, 5%, and 10%) were adopted. The range of considered river inflow represents low to high fluvial input conditions. The combination of all variables resulted in 432 simulation cases (144 simulations for each estuary geometry).

#### 2.2. Tidal Properties

_{t}is the length of equidistant time series data [45]. A positive value of TS denotes a longer rising tide duration and an ebb-dominated system, whereas a negative value suggests a longer falling tide duration and a flood-dominated system [45].

#### 2.3. Data Analysis

## 3. Results

#### 3.1. Effects of SLR and/or Altered Riverine Inflows on Estuarine Tidal Range

- (i)
- SLR led to minor (weak) increases in tidal range along the estuaries (dark green coloured cells);
- (ii)
- SLR substantially increased the tidal range at the mouth and then minimally strengthened it in a landward direction (light green coloured cells).

_{0}= 0.5 and 1 m), while the second pattern was often observed in estuaries with macrotidal conditions (TR

_{0}= 4 m). Where SLR increased the tidal range, this was consistent with reported research of real-world estuaries, such as the Elbe River [47], York River [20], Rappahannock River [20], Hudson–Raritan Estuary [48], and Minnamurra River [49]. In these cases, amplified tides may exceed the crest of protective structures, exacerbate flood events [50], and lead to the failure of surface drainage infrastructures; shoreline erosion; and loss of wetlands, intertidal areas, and their associated ecosystems [7,12,51].

_{L}= 160 km largely varied along the first half of the estuary length (i.e., 0 $\le $ x $\le $ 0.5 L), whereas areas of strong tidal variations were located around the mouth and head (i.e., x = 0 and L) of converging estuaries with C

_{L}= 80 km. This finding aligned with predictions in real-world estuaries, such as the moderately converging Patuxent Estuary (L = ~40 km), which may experience larger variations in tidal range in its first 20 km [20], and the strongly converging Delaware Bay estuary, which may undergo a substantial tidal amplification in its upstream zones [52].

_{0}= 4 m) (Table 1). In these estuaries, the dampening effect of the bottom friction became important (particularly in the upstream part of the estuary), and a larger Manning’s n could lead to a weaker tidal range amplification. For instance, in a converging estuary with C

_{L}= 80 km, TR

_{0}= 4 m, L = 40 km, and Q/TP = 10%, a substantial increase in tidal range with an SLR of 1 m was observed at x = 0, 0.5 L, and L for n = 0.015 s/m

^{1/3}, whereas for n = 0.03 s/m

^{1/3}, the tidal range only increased at x = 0 (cells a-36 and b-36 in Table 1). In this case, it appeared that the convergence effect outweighed the reduced frictional effects under SLR when n = 0.015 s/m

^{1/3}, but friction dominated when Manning’s n increased to n = 0.03 s/m

^{1/3}. There were only four cases with C

_{L}= 80 km, L = 40 and 80 km, n = 0.015 and 0.03 s/m

^{1/3}, and Q/TP = 5% and 10% (cells a-35, b-35, c-35, and a-36 in Table 1) that experienced a substantial increase in tidal range at three or more nodes along the estuary when SLR = 1 m. Such an increase in tidal range due to SLR was observed in several estuaries around the British coast such as the Severn Estuary, which is a converging macrotidal site [53].

_{0}= 4 m) or a strongly converging shape (C

_{L}= 80 km) (Table 1). For example, in a converging estuary with C

_{L}= 160 km, TR

_{0}= 4 m, L = 160 km, and n = 0.015 s/m

^{1/3}, an SLR of 1 m caused a tidal range amplification at all transects when Q/TP = 1%, with the strongest increases observed at the mouth (cell e-22 in Table 1). However, when Q/TP = 5%, SLR only strongly intensified the tidal range at the mouth, with tidal attenuation observed at x = 0.75 L (cell e-23 in Table 1). Increasing inflows appeared to act against the tidal propagation leading to tidal attenuation in the upstream part of the estuary [54]. A similar trend under rising river inflows has been reported in real-world estuaries, including the Ganges–Brahmaputra–Meghna Delta [55], the Scheldt Estuary [56], and the Pearl River [57].

_{L}= 160 km estuaries) where SLR could reduce the tidal range. These mainly included transects (nodes) at x = 0.25 L for prismatic cases with TR

_{0}= 0.5 and 1 m, L = 160 km, n = 0.015 and 0.03 s/m

^{1/3}, and Q/TP = 0% and 1% (cells e-1, f-1, e-2, f-2, e-5, f-5, e-6, and f-6 in Table 1); transects at 0.25 L ≤ x ≤ 0.5 L for prismatic cases with TR

_{0}= 4 m, L = 40 and 80 km, n = 0.015 s/m

^{1/3}, and Q/TP = 5% (cells a-11 and c-11 in Table 1); and transects at x = 0.75 L for converging estuaries with C

_{L}= 160 km, TR

_{0}= 4 m, L = 40, 80, and 160 km, n = 0.015 and 0.03 s/m

^{1/3}, and Q/TP = 1% and 5% (cells a-22 to e-22 and a-23 to f-23 in Table 1).

**Table 1.**Compounding effects of SLR and varying river inflows on tidal range at five nodes along the estuaries (x = 0, 0.25 L, 0.5 L, 0.75 L, and L), which are represented by five consecutive triangles in each cell. Upward and downward triangles indicate an increase or a decrease in tidal range induced by 1 m of SLR and for four varying river inflows (Q/TP = 0%, 1%, 5%, and 10%). Hollow and solid triangles imply weak (0 $\le \left|\alpha \right|\le $ 0.5) and strong (0.5 $<\left|\alpha \right|\le $ 1) Pearson correlation coefficients, respectively. The symbol “–” denotes the absence of a correlation (for details, see [46]). Dominant patterns of change in tidal properties under compounding effects of SLR and river inflows are highlighted with similar colours across Table 1, Table 2 and Table 3.

a | b | c | d | e | f | |||

L | 40 km | 80 km | 160 km | |||||

n | 0.015 s/m^{1/3} | 0.03 s/m^{1/3} | 0.015 s/m^{1/3} | 0.03 s/m^{1/3} | 0.015 s/m^{1/3} | 0.03 s/m^{1/3} | ||

Prismatic | TR_{0} = 0.5 m | No inflow (Q/TP = 0%) | ||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △▽△△△ | △▽△△△ | 1 | ||

Low inflow (Q/TP = 1%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △▽△△△ | △▽△△△ | 2 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 3 | ||

High inflow (Q/TP = 10%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 4 | ||

TR_{0} = 1 m | No inflow (Q/TP = 0%) | |||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △▽△△△ | △▽△△△ | 5 | ||

Low inflow (Q/TP = 1%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △▽△△△ | △▽△△△ | 6 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 7 | ||

High inflow (Q/TP = 10%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 8 | ||

TR_{0} = 4 m | No inflow (Q/TP = 0%) | |||||||

△△△△△ | △△△△△ | △▲△△△ | △△–△△ | △△△△△ | △△△△△ | 9 | ||

Low inflow (Q/TP = 1%) | ||||||||

▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△–△△ | ▲△△△△ | ▲△△△△ | 10 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

▲▽▽△△ | ▲△–△△ | ▲▽▽△△ | ▲△△△△ | ▲△△△△ | ▲△△△△ | 11 | ||

High inflow (Q/TP = 10%) | ||||||||

▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△▲△△ | ▲△△△△ | 12 | ||

Converging with C_{L} = 160 km | TR_{0} = 0.5 m | No inflow (Q/TP = 0%) | ||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 13 | ||

Low inflow (Q/TP = 1%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 14 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 15 | ||

High inflow (Q/TP = 10%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 16 | ||

TR_{0} = 1 m | No inflow (Q/TP = 0%) | |||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 17 | ||

Low inflow (Q/TP = 1%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 18 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 19 | ||

High inflow (Q/TP = 10%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 20 | ||

TR_{0} = 4 m | No inflow (Q/TP = 0%) | |||||||

▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△▲△△ | ▲△△△△ | 21 | ||

Low inflow (Q/TP = 1%) | ||||||||

▲△△▽△ | ▲△△▽△ | ▲△△▽△ | ▲△-▽△ | ▲△△▽▲ | ▲△△△▲ | 22 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

▲–▲▽△ | ▲△–▽△ | ▲▽▲▽△ | ▲△△▽△ | ▲△△▽△ | ▲△△▽△ | 23 | ||

High inflow (Q/TP = 10%) | ||||||||

▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | 24 | ||

Converging with C_{L} = 80 km | TR_{0} = 0.5 m | No inflow (Q/TP = 0%) | ||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 25 | ||

Low inflow (Q/TP = 1%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 26 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△–△△ | △△△△△ | 27 | ||

High inflow (Q/TP = 10%) | ||||||||

△△△△△ | △△△△△ | △△△△▲ | △△△△▲ | △△△△▲ | △△△△▲ | 28 | ||

TR_{0} = 1 m | No inflow (Q/TP = 0%) | |||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 29 | ||

Low inflow (Q/TP = 1%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△▲△ | 30 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△–△ | △△△△△ | 31 | ||

High inflow (Q/TP = 10%) | ||||||||

△△△△▲ | △△△△– | △△△△▲ | △△△△▲ | △△△–▲ | △△△△▲ | 32 | ||

TR_{0} = 4 m | No inflow (Q/TP = 0%) | |||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△▲△△ | △△△△△ | 33 | ||

Low inflow (Q/TP = 1%) | ||||||||

▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△△△△ | ▲△△▲△ | 34 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

▲▲▲▲– | ▲△▲▲▽ | ▲▲▲▲△ | ▲△△▲▽ | ▲△△▲△ | ▲△△▲△ | 35 | ||

High inflow (Q/TP = 10%) | ||||||||

▲△▲△▲ | ▲△△△△ | ▲△▲△△ | ▲△△△△ | ▲△△△▲ | ▲△△△▲ | 36 |

#### 3.2. Effects of SLR and/or Altered Riverine Inflows on Estuarine Maximum Current Velocity

- (i)
- Compounding effects of SLR and moderate to high inflows (Q/TP = 5–10%) increased this parameter particularly in the first half of estuaries (0 $\le $ x $\le $ 0.5 L) (e.g., dark and light shades of red in Table 2);
- (ii)
- SLR minimally reduced this parameter when L = 40 and 80 km, TR
_{0}= 0.5 and 1 m, and Q/TP = 0–1% (e.g., very light shades of red in Table 2).

_{0}= 0.5 and 1 m and Q/TP = 0%, but for long estuaries (L = 160 km), both small increases and decreases were observed (Table 2). This observation of a mixed pattern was consistent with findings in the Hudson River, a long, mesotidal, moderately converging estuary (L $\cong $ 245 km, TR

_{0}$\cong $ 1.3 m, C

_{L}$\cong $ 140 km) [58,59], where SLR would lead to minor increases in the residual current speed mid-estuary and minor decreases in the upper bay [48]. Although the maximum velocity does not change considerably under SLR, the current velocity distribution (e.g., ebb or flood velocity values) may vary throughout the system [22].

_{0}= 4 m and Q/TP = 0%, SLR generally increased the velocity up to three quarters of the prismatic and converging cases with C

_{L}= 160 km (e.g., cells a-21 to f-21 in Table 2) but decreased at the mouth and head of converging estuaries with C

_{L}= 80 km (e.g., cells e-33 and f-33 in Table 2). For low inflows (Q/TP = 1%) and TR

_{0}= 0.5 and 1 m, SLR often decreased the current velocity along prismatic and converging with C

_{L}= 160 km estuaries with L = 40 or 80 km (e.g., cells a-6 to d-6 in Table 2), whereas it increased in estuaries with L = 160 km (e.g., cells e-6 and f-6 in Table 2). This finding was consistent with the microtidal, ~100 km long Barataria Bay, where SLR decreased the longitudinal velocity by nearly 58% in the mid-estuary region [60]. When Q/TP = 1% and TR

_{0}= 4 m, nearly all prismatic and converging with C

_{L}= 160 km estuaries (cells a-10 to f-10 and a-22 to f-22 in Table 2) and almost all converging cases with C

_{L}= 80 km experienced an increase in their maximum current velocity due to SLR.

_{0}= 4 m). For instance, for a converging case with C

_{L}= 80 km, TR

_{0}= 4 m, L = 80 km, and Q/TP = 10%, SLR strongly increased the maximum current velocity from the mouth up to the mid-estuary (x = 0.5 L) when n = 0.015 s/m

^{1/3}(cell c-36 in Table 2) and up to x = 0.25 L when n = 0.03 s/m

^{1/3}(cell d-36 in Table 2). In converging estuaries, the funnelling effects outweighed the frictional effects from the entrance to a distance along the estuary before reaching a balance between these two forces [29,62].

**Table 2.**Compounding effects of SLR and varying river inflows on maximum current velocity at five nodes along the estuaries (x = 0, 0.25 L, 0.5 L, 0.75 L, and L), which are represented by five consecutive triangles in each cell. Upward and downward triangles indicate an increase or a decrease in maximum current velocity induced by 1 m of SLR and for four varying river inflows (Q/TP = 0%, 1%, 5%, and 10%). Hollow and solid triangles imply weak (0 $\le \left|\alpha \right|\le $ 0.5) and strong (0.5 $<\left|\alpha \right|\le $ 1) Pearson correlation coefficients, respectively. The symbol “–” denotes the absence of a correlation (for details, see [46]). Dominant patterns of change in tidal properties under compounding effects of SLR and river inflows are highlighted with similar colours across Table 1, Table 2 and Table 3.

a | b | c | d | e | f | |||

L | 40 km | 80 km | 160 km | |||||

n | 0.015 s/m^{1/3} | 0.03 s/m^{1/3} | 0.015 s/m^{1/3} | 0.03 s/m^{1/3} | 0.015 s/m^{1/3} | 0.03 s/m^{1/3} | ||

Prismatic | TR_{0} = 0.5 m | No inflow (Q/TP = 0%) | ||||||

▽▽▽▽▽ | ▽▽▽▽▽ | △▽▽▽▽ | △▽▽▽▽ | △△△▽▽ | △△△▽▽ | 1 | ||

Low inflow (Q/TP = 1%) | ||||||||

▽▽▽▽△ | ▽▽▽▽△ | △▽▽▽△ | △▽▽▽△ | △△△▽△ | △△△▽△ | 2 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 3 | ||

High inflow (Q/TP = 10%) | ||||||||

▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | 4 | ||

TR_{0} = 1 m | No inflow (Q/TP = 0%) | |||||||

▽▽▽▽▽ | ▽▽▽▽▽ | △▽▽▽▽ | △▽▽▽▽ | △△△▽▽ | △△△▽▽ | 5 | ||

Low inflow (Q/TP = 1%) | ||||||||

▽▽▽▽△ | ▽▽▽▽△ | △▽▽▽△ | △▽▽▽△ | △△△▽△ | △△△▽△ | 6 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 7 | ||

High inflow (Q/TP = 10%) | ||||||||

▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | 8 | ||

TR_{0} = 4 m | No inflow (Q/TP = 0%) | |||||||

△▽△△▽ | △▽△△▽ | △▲△△▽ | △△–△▽ | △△△△▽ | △△△△▽ | 9 | ||

Low inflow (Q/TP = 1%) | ||||||||

△▽△△△ | △▽△△△ | △△△△△ | △△-△△ | △△△△△ | △△△△△ | 10 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△▲△△▲ | △△–▲▲ | △▲△△▲ | △△△▲▲ | △△△△▲ | △△△▲▲ | 11 | ||

High inflow (Q/TP = 10%) | ||||||||

▲▲▲▲▲ | ▲▲▲▲△ | ▲▲▲▲△ | ▲▲▲▲△ | ▲▲▲▲△ | ▲▲▲△△ | 12 | ||

Converging with C_{L} = 160 km | TR_{0} = 0.5 m | No inflow (Q/TP = 0%) | ||||||

▽△▽▽▽ | ▽△▽▽▽ | ▽△▽▽▽ | ▽△▽▽▽ | ▽△△▽▽ | ▽△△▽▽ | 13 | ||

Low inflow (Q/TP = 1%) | ||||||||

▽△▽△△ | ▽△▽△△ | ▽△▽△△ | ▽△▽△△ | ▽△△△△ | ▽△△△△ | 14 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△▽△△△ | △▽△△△ | △△△△△ | △▲△△△ | △▲△△△ | △▲△△△ | 15 | ||

High inflow (Q/TP = 10%) | ||||||||

▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | 16 | ||

TR_{0} = 1 m | No inflow (Q/TP = 0%) | |||||||

▽△▽▽▽ | ▽△▽▽▽ | ▽△▽▽▽ | ▽△▽▽▽ | ▽△△▽▽ | ▽△△▽▽ | 17 | ||

Low inflow (Q/TP = 1%) | ||||||||

▽△▽△△ | ▽△▽△△ | ▽△▽△△ | ▽△▽△△ | ▽△△△△ | ▽△△△△ | 18 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△▽△△△ | △▽△△△ | △△△△△ | △▲△△△ | △▲△△△ | △▲△△△ | 19 | ||

High inflow (Q/TP = 10%) | ||||||||

▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲▲△△ | ▲▲▲△△ | ▲▲▲△△ | 20 | ||

TR_{0} = 4 m | No inflow (Q/TP = 0%) | |||||||

△△△△▽ | △△△△▽ | △△△△▽ | △△△△▽ | △△▲△▽ | △△△△▽ | 21 | ||

Low inflow (Q/TP = 1%) | ||||||||

△△▽△△ | △△▽△△ | △△▽△△ | △△–△△ | △△△△▲ | △△△▽▲ | 22 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△–△△△ | △▽–△△ | △▲△△△ | △△△△△ | △▽△△△ | △△△△△ | 23 | ||

High inflow (Q/TP = 10%) | ||||||||

▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | 24 | ||

Converging with C_{L} = 80 km | TR_{0} = 0.5 m | No inflow (Q/TP = 0%) | ||||||

▽▽▽▽▽ | ▽▽▽▽▽ | ▽▽▽▽▽ | ▽▽▽▽▽ | ▽▽△▽▽ | ▽▽△▽▽ | 25 | ||

Low inflow (Q/TP = 1%) | ||||||||

▽△△△△ | ▽△△△△ | ▽△△△△ | ▽△△△△ | ▽△△△△ | ▽△▽△△ | 26 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△–△△ | △△△△▽ | 27 | ||

High inflow (Q/TP = 10%) | ||||||||

▲▲△△▲ | ▲▲△△▲ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | 28 | ||

TR_{0} = 1 m | No inflow (Q/TP = 0%) | |||||||

▽▽▽▽▽ | ▽▽▽▽▽ | ▽▽▽▽▽ | ▽▽▽▽▽ | ▽▽△▽▽ | ▽▽△▽▽ | 29 | ||

Low inflow (Q/TP = 1%) | ||||||||

▽△△△△ | ▽△△△△ | ▽△△△△ | ▽△△△△ | ▽△▽△△ | ▽△▽△△ | 30 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△▽ | △△△–▽ | △△△△▽ | 31 | ||

High inflow (Q/TP = 10%) | ||||||||

▲▲△△△ | ▲▲▽▽– | ▲▲△△△ | ▲▲△△△ | ▲▲△–△ | ▲▲△△△ | 32 | ||

TR_{0} = 4 m | No inflow (Q/TP = 0%) | |||||||

▽△▽△▽ | ▽△▽△▽ | ▽△▽△▽ | ▽△▽△▽ | ▽△▲△▽ | ▽△△△▽ | 33 | ||

Low inflow (Q/TP = 1%) | ||||||||

△△▽△△ | △△▽△△ | △△▽△△ | △△▽△△ | △△▽△▲ | △△▽△▲ | 34 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△▲△▲- | △▽△▲△ | △▲△▲△ | △△△△△ | △△△△△ | △△△△△ | 35 | ||

High inflow (Q/TP = 10%) | ||||||||

▲▲▲△▽ | ▲▲△△△ | ▲▲▲△△ | ▲▲△△△ | ▲▲△△△ | ▲▲△△△ | 36 |

#### 3.3. Effects of SLR and/or Altered Riverine Inflows on Estuarine Asymmetry

_{0}= 4 m). These increased transformed skewness values do not necessarily imply ebb tide domination but can also represent a reduced flood tide domination. This is important as increasing transformed skewness may reinforce seaward sediment export/flushing and jeopardise shoreline stability and marsh accretion. This finding was consistent with the analytical predictions of [67,68], indicating that flood tide domination reduces with increasing water depth (e.g., under SLR) in estuaries with no (or small) tidal flats or with considerable overland inundation.

_{L}= 80 km and TR

_{0}= 0.5 and 1 m, an SLR of 1 m generally increased the transformed skewness along most estuaries, leading to less flood tide domination or more ebb tide domination where Q/TP ≤ 5% (rows 25–27 and 29–31 in Table 3). Where Q/TP = 10% and TR

_{0}= 0.5 and 1 m (rows 28 and 32 in Table 3), SLR enhanced ebb tide dominance along all transects (nodes) except at x = 0.75 L, where SLR brought about flood tide dominance. When C

_{L}= 80 km and TR

_{0}= 4 m, SLR considerably reduced the flood tide dominance in all cases with Q/TP = ≤ 1 % (rows 33 and 34 in Table 3). As a converging estuary with minor river inflows, the Tamar River estuary in Australia is a real-world example that will likely experience a reduction of up to 40% in its flood tide dominance under SLR, enhancing flushing and altering the geomorphic trajectory of the system [69]. Converging cases with C

_{L}= 160 km largely followed similar trends as cases with stronger convergence (C

_{L}= 80 km), except for cases with L = 40 and 80 km, TR

_{0}= 0.5 and 1 m, and Q/TP = 0%, where SLR reduced flood tide dominance at all cross-sections except the mid-estuary (cells a-13 to d-13 and a-17 to d-17 in Table 3). Prismatic estuaries with TR

_{0}= 0.5 and 1 m, L = 40 km, and Q/TP = ≤ 1% were the only cases that underwent an increased flood tide dominance at their mouths (cells a-1, b-1, a-2, b-2, a-5, b-5, a-6, and b-6 in Table 3), boosting sediment import and basin infilling.

_{L}= 160 km, TR

_{0}= 4 m, L = 80 km, and Q/TP = 5%, the transformed skewness strongly increased along the estuary from the oceanic entrance to the head when n = 0.015 s/m

^{1/3}(cell c-23 in Table 3) but only strongly increased the transformed skewness at the entrance and head and decreased at other transects (nodes) when n = 0.03 s/m

^{1/3}(cell d-23 in Table 3). As such, a system may shift from ebb tide dominant (or less flood dominant) to flood tide dominant (or less ebb tide dominant) by increasing friction, leading to an increasingly turbid estuary, as observed in the Ems River [71].

**Table 3.**Compounding effects of SLR and varying river inflows on transformed skewness at five nodes along the estuaries (x = 0, 0.25 L, 0.5 L, 0.75 L, and L), which are represented by five consecutive triangles in each cell. Upward and downward triangles indicate an increase or a decrease in transformed skewness induced by 1 m of SLR and for four varying river inflows (Q/TP = 0%, 1%, 5%, and 10%). Hollow and solid triangles imply weak (0 $\le \left|\alpha \right|\le $ 0.5) and strong (0.5 $<\left|\alpha \right|\le $ 1) Pearson correlation coefficients, respectively. The symbol “–” denotes the absence of a correlation (for details, see [46]). Dominant patterns of change in tidal properties under compounding effects of SLR and river inflows are highlighted with similar colours across Table 1, Table 2 and Table 3.

a | b | c | d | e | f | |||

L | 40 km | 80 km | 160 km | |||||

n | 0.015 s/m^{1/3} | 0.03 s/m^{1/3} | 0.015 s/m^{1/3} | 0.03 s/m^{1/3} | 0.015 s/m^{1/3} | 0.03 s/m^{1/3} | ||

Prismatic | TR_{0} = 0.5 m | No inflow (Q/TP = 0%) | ||||||

▽△▽△△ | ▽△▽△△ | △△▽△△ | △△▽△△ | △▲▽△△ | △▲▽△△ | 1 | ||

Low inflow (Q/TP = 1%) | ||||||||

▽△△△△ | ▽△△△△ | △△△△△ | △△△△△ | △▲▽△△ | △▲▽△△ | 2 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△▽△△ | △△▽△△ | 3 | ||

High inflow (Q/TP = 10%) | ||||||||

△△△▽△ | △△△▽△ | △△△▽△ | △△△▽△ | △△▽▽△ | △△▽▽△ | 4 | ||

TR_{0} = 1 m | No inflow (Q/TP = 0%) | |||||||

▽△▽△△ | ▽△▽△△ | △△▽△△ | △△▽△△ | △▲▽△△ | △▲▽△△ | 5 | ||

Low inflow (Q/TP = 1%) | ||||||||

▽△△△△ | ▽△△△△ | △△△△△ | △△△△△ | △▲▽△△ | △▲▽△△ | 6 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△▽△△ | △△▽△△ | 7 | ||

High inflow (Q/TP = 10%) | ||||||||

△△△▽△ | △△△▽△ | △△△▽△ | △△△▽△ | △△▽▽△ | △△▽▽△ | 8 | ||

TR_{0} = 4 m | No inflow (Q/TP = 0%) | |||||||

△△▲△△ | △△▲△△ | △▲▲△△ | △△-△△ | △△▽△△ | △△▽△△ | 9 | ||

Low inflow (Q/TP = 1%) | ||||||||

▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△–▲▲ | ▲△▽▲▲ | ▲△▽▲▲ | 10 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

▲△△△▲ | ▲△–▼▲ | ▲△△△▲ | ▲△▽▼▲ | ▲△▽△▲ | ▲△▽▼▲ | 11 | ||

High inflow (Q/TP = 10%) | ||||||||

▲△▼▽▲ | ▲△△▽▲ | ▲△△▽▲ | ▲△△▽▲ | ▲△▽▽▲ | ▲△△▽▲ | 12 | ||

Converging with C_{L} = 160 km | TR_{0} = 0.5 m | No inflow (Q/TP = 0%) | ||||||

△△▽△△ | △△▽△△ | △△▽△△ | △△▽△△ | △△△△△ | △△△△△ | 13 | ||

Low inflow (Q/TP = 1%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 14 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △▽△△△ | △△△△△ | △▲▽△△ | △△▽△△ | 15 | ||

High inflow (Q/TP = 10%) | ||||||||

△△△▽△ | △△△▽△ | △△△▽△ | △△▽▽△ | △△▽▽△ | △△▽▽△ | 16 | ||

TR_{0} = 1 m | No inflow (Q/TP = 0%) | |||||||

△△▽△△ | △△▽△△ | △△▽△△ | △△▽△△ | △△△△△ | △△△△△ | 17 | ||

Low inflow (Q/TP = 1%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 18 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △▽△△△ | △△△△△ | △▲▽△△ | △△▽△△ | 19 | ||

High inflow (Q/TP = 10%) | ||||||||

△△△▽△ | △△△▽△ | △△△▽△ | △△▽▽△ | △△▽▽△ | △△▽▽△ | 20 | ||

TR_{0} = 4 m | No inflow (Q/TP = 0%) | |||||||

▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△△▲▲ | ▲△▼▲▲ | ▲△△▲△ | 21 | ||

Low inflow (Q/TP = 1%) | ||||||||

▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△-▲▲ | ▲△△▲▲ | ▲△△▲▲ | 22 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

▲–▲△▲ | ▲▲–△▲ | ▲▲▲△▲ | ▲▽▽▽▲ | ▲▲▽▽▲ | ▲▽▽▽▲ | 23 | ||

High inflow (Q/TP = 10%) | ||||||||

▲△△▽▲ | ▲△▽▽▲ | ▲△△▽▲ | ▲△▽▽▲ | ▲△▽▽▲ | ▲△▽▽▲ | 24 | ||

Converging with C_{L} = 80 km | TR_{0} = 0.5 m | No inflow (Q/TP = 0%) | ||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 25 | ||

Low inflow (Q/TP = 1%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 26 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△–△▲ | △△▽△▲ | 27 | ||

High inflow (Q/TP = 10%) | ||||||||

△△△▽▲ | △△△▽▲ | △△△▽▲ | △△△▽▲ | △△△▽△ | △△△▽△ | 28 | ||

TR_{0} = 1 m | No inflow (Q/TP = 0%) | |||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 29 | ||

Low inflow (Q/TP = 1%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | △△△△△ | 30 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

△△△△△ | △△△△△ | △△△△△ | △△△△▲ | △△▽-▲ | △△▽△▲ | 31 | ||

High inflow (Q/TP = 10%) | ||||||||

△△△▽▲ | △△△▽- | △△△▽▲ | △△△▽▲ | △△▽-△ | △△△▽△ | 32 | ||

TR_{0} = 4 m | No inflow (Q/TP = 0%) | |||||||

▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△△▲△ | 33 | ||

Low inflow (Q/TP = 1%) | ||||||||

▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△▲▲▲ | ▲△△▲▲ | ▲△△△▲ | 34 | ||

Moderate inflow (Q/TP = 5%) | ||||||||

▲▲▲▲– | ▲▽▲▲▲ | ▲▲▲▲▲ | ▲▽▽▽▲ | ▲▽▽▽▲ | ▲▽▽▽▲ | 35 | ||

High inflow (Q/TP = 10%) | ||||||||

▲△△△▲ | ▲△▽△▲ | ▲△△△▲ | ▲△▽△▲ | ▲△▽△▲ | ▲△▽△▲ | 36 |

## 4. Discussion

- (i)
- The most common patterns of change in tidal properties along the length of estuaries;
- (ii)
- The estuary types influenced by compounding effects of SLR and varying riverine inflows; and,
- (iii)
- The most vulnerable estuarine cross-sections.

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Barbier, E.B. Valuing the storm protection service of estuarine and coastal ecosystems. Ecosyst. Serv.
**2015**, 11, 32–38. [Google Scholar] [CrossRef] - Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr.
**2011**, 81, 169–193. [Google Scholar] [CrossRef] - Day, J.W., Jr.; Kemp, W.M.; Yáñez-Arancibia, A.; Crump, B.C. Estuarine Ecology; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Harrison, L.M.; Coulthard, T.J.; Robins, P.E.; Lewis, M.J. Sensitivity of estuaries to compound flooding. Estuaries Coasts
**2021**, 45, 1250–1269. [Google Scholar] [CrossRef] - Muis, S.; Verlaan, M.; Winsemius, H.C.; Aerts, J.C.; Ward, P.J. A global reanalysis of storm surges and extreme sea levels. Nat. Commun.
**2016**, 7, 11969. [Google Scholar] [CrossRef][Green Version] - Ward, P.J.; Couasnon, A.; Eilander, D.; Haigh, I.D.; Hendry, A.; Muis, S.; Veldkamp, T.I.; Winsemius, H.C.; Wahl, T. Dependence between high sea-level and high river discharge increases flood hazard in global deltas and estuaries. Environ. Res. Lett.
**2018**, 13, 084012. [Google Scholar] [CrossRef] - Rayner, D.; Glamore, W.; Grandquist, L.; Ruprecht, J.; Waddington, K.; Khojasteh, D. Intertidal wetland vegetation dynamics under rising sea levels. Sci. Total Environ.
**2021**, 766, 144237. [Google Scholar] [CrossRef] [PubMed] - Huang, Z.; Zong, Y.; Zhang, W. Coastal inundation due to sea level rise in the Pearl River Delta, China. Nat. Hazards
**2004**, 33, 247–264. [Google Scholar] [CrossRef][Green Version] - Riggs, S.R. Drowning the North Carolina Coast: Sea-Level Rise and Estuarine Dynamics; The National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2003. [Google Scholar]
- Valentim, J.; Vaz, N.; Silva, H.; Duarte, B.; Caçador, I.; Dias, J. Tagus estuary and Ria de Aveiro salt marsh dynamics and the impact of sea level rise. Estuar. Coast. Shelf Sci.
**2013**, 130, 138–151. [Google Scholar] [CrossRef] - Vu, D.; Yamada, T.; Ishidaira, H. Assessing the impact of sea level rise due to climate change on seawater intrusion in Mekong Delta, Vietnam. Water Sci. Technol.
**2018**, 77, 1632–1639. [Google Scholar] [CrossRef] [PubMed][Green Version] - Waddington, K.; Khojasteh, D.; Marshall, L.; Rayner, D.; Glamore, W. Quantifying the Effects of Sea Level Rise on Estuarine Drainage Systems. Water Resour. Res.
**2022**, 58, e2021WR031405. [Google Scholar] [CrossRef] - Glamore, W.; Rayner, D.; Ruprecht, J.; Sadat-Noori, M.; Khojasteh, D. Eco-hydrology as a driver for tidal restoration: Observations from a Ramsar wetland in eastern Australia. PLoS ONE
**2021**, 16, e0254701. [Google Scholar] [CrossRef] [PubMed] - Sadat-Noori, M.; Rankin, C.; Rayner, D.; Heimhuber, V.; Gaston, T.; Drummond, C.; Chalmers, A.; Khojasteh, D.; Glamore, W. Coastal wetlands can be saved from sea level rise by recreating past tidal regimes. Sci. Rep.
**2021**, 11, 1196. [Google Scholar] [CrossRef] - Cai, H.; Savenije, H.; Toffolon, M. Linking the river to the estuary: Influence of river discharge on tidal damping. Hydrol. Earth Syst. Sci.
**2014**, 18, 287–304. [Google Scholar] [CrossRef][Green Version] - Dykstra, S.; Dzwonkowski, B. The propagation of fluvial flood waves through a backwater-estuarine environment. Water Resour. Res.
**2020**, 56, e2019WR025743. [Google Scholar] [CrossRef] - Talke, S.A.; Jay, D.A. Changing tides: The role of natural and anthropogenic factors. Annu. Rev. Mar. Sci.
**2020**, 12, 121–151. [Google Scholar] [CrossRef] [PubMed][Green Version] - Khojasteh, D.; Glamore, W.; Heimhuber, V.; Felder, S. Sea level rise impacts on estuarine dynamics: A review. Sci. Total Environ.
**2021**, 780, 146470. [Google Scholar] [CrossRef] [PubMed] - Khojasteh, D.; Lewis, M.; Tavakoli, S.; Farzadkhoo, M.; Felder, S.; Iglesias, G.; Glamore, W. Sea level rise will change estuarine tidal energy: A review. Renew. Sustain. Energy Rev.
**2022**, 156, 111855. [Google Scholar] [CrossRef] - Du, J.; Shen, J.; Zhang, Y.J.; Ye, F.; Liu, Z.; Wang, Z.; Wang, Y.P.; Yu, X.; Sisson, M.; Wang, H.V. Tidal response to sea-level rise in different types of estuaries: The Importance of Length, Bathymetry, and Geometry. Geophys. Res. Lett.
**2018**, 45, 227–235. [Google Scholar] [CrossRef][Green Version] - Khojasteh, D.; Chen, S.; Felder, S.; Heimhuber, V.; Glamore, W. Estuarine tidal range dynamics under rising sea levels. PLoS ONE
**2021**, 16, e0257538. [Google Scholar] [CrossRef] - Khojasteh, D.; Hottinger, S.; Felder, S.; De Cesare, G.; Heimhuber, V.; Hanslow, D.J.; Glamore, W. Estuarine tidal response to sea level rise: The significance of entrance restriction. Estuar. Coast. Shelf Sci.
**2020**, 244, 106941. [Google Scholar] [CrossRef] - Moore, R.D.; Wolf, J.; Souza, A.J.; Flint, S.S. Morphological evolution of the Dee Estuary, Eastern Irish Sea, UK: A tidal asymmetry approach. Geomorphology
**2009**, 103, 588–596. [Google Scholar] [CrossRef][Green Version] - Ni, W.; Morgan, J.A.; Horner-Devine, A.R.; Kumar, N.; Ahrendt, S. Impacts of Sea-Level Rise on Morphodynamics and Riverine Flooding in an Idealized Estuary. Water Resour. Res.
**2022**, 58, e2022WR032544. [Google Scholar] [CrossRef] - Garcia-Oliva, M.; Djordjević, S.; Tabor, G.R. The influence of channel geometry on tidal energy extraction in estuaries. Renew. Energy
**2017**, 101, 514–525. [Google Scholar] [CrossRef] - Khojasteh, D.; Glamore, W.; Heimhuber, V.; Hottinger, S.; Felder, S. Implications of tidal resonance and water depth on predicting sea level rise in estuaries. In Proceedings of the Australasia Coasts & Ports Conference, Hobart, Australia, 10–13 September 2019. [Google Scholar]
- Savenije, H.H.G.; Toffolon, M.; Haas, J.; Veling, E.J.M. Analytical description of tidal dynamics in convergent estuaries. J. Geophys. Res. Ocean.
**2008**, 113, C10025. [Google Scholar] [CrossRef] - Garel, E.; Cai, H. Effects of Tidal-Forcing Variations on Tidal Properties Along a Narrow Convergent Estuary. Estuaries Coasts
**2018**, 41, 1924–1942. [Google Scholar] [CrossRef][Green Version] - Van Rijn, L.C. Analytical and numerical analysis of tides and salinities in estuaries; part I: Tidal wave propagation in convergent estuaries. Ocean. Dyn.
**2011**, 61, 1719–1741. [Google Scholar] [CrossRef] - Karim, F.; Armin, M.A.; Ahmedt-Aristizabal, D.; Tychsen-Smith, L.; Petersson, L. A Review of Hydrodynamic and Machine Learning Approaches for Flood Inundation Modeling. Water
**2023**, 15, 566. [Google Scholar] [CrossRef] - Lange, H.; Sippel, S. Machine learning applications in hydrology. For. Water Interact.
**2020**, 1, 233–257. [Google Scholar] - Xu, T.; Liang, F. Machine learning for hydrologic sciences: An introductory overview. Wiley Interdiscip. Rev. Water
**2021**, 8, e1533. [Google Scholar] [CrossRef] - Rahman, M.; Chen, N.; Islam, M.M.; Mahmud, G.I.; Pourghasemi, H.R.; Alam, M.; Rahim, M.A.; Baig, M.A.; Bhattacharjee, A.; Dewan, A. Development of flood hazard map and emergency relief operation system using hydrodynamic modeling and machine learning algorithm. J. Clean. Prod.
**2021**, 311, 127594. [Google Scholar] [CrossRef] - Hosseiny, H. A deep learning model for predicting river flood depth and extent. Environ. Model. Softw.
**2021**, 145, 105186. [Google Scholar] [CrossRef] - Dazzi, S.; Vacondio, R.; Mignosa, P. Flood stage forecasting using machine-learning methods: A case study on the Parma River (Italy). Water
**2021**, 13, 1612. [Google Scholar] [CrossRef] - Sampurno, J.; Vallaeys, V.; Ardianto, R.; Hanert, E. Integrated hydrodynamic and machine learning models for compound flooding prediction in a data-scarce estuarine delta. Nonlinear Process. Geophys.
**2022**, 29, 301–315. [Google Scholar] [CrossRef] - Huang, S.; Xia, J.; Wang, Y.; Wang, W.; Zeng, S.; She, D.; Wang, G. Coupling Machine Learning Into Hydrodynamic Models to Improve River Modeling With Complex Boundary Conditions. Water Resour. Res.
**2022**, 58, e2022WR032183. [Google Scholar] [CrossRef] - Pyo, J.; Cho, K.H.; Kim, K.; Baek, S.-S.; Nam, G.; Park, S. Cyanobacteria cell prediction using interpretable deep learning model with observed, numerical, and sensing data assemblage. Water Res.
**2021**, 203, 117483. [Google Scholar] [CrossRef] - Jin, D.; Lee, E.; Kwon, K.; Kim, T. A deep learning model using satellite ocean color and hydrodynamic model to estimate chlorophyll-a concentration. Remote Sens.
**2021**, 13, 2003. [Google Scholar] [CrossRef] - Guénard, G.; Morin, J.; Matte, P.; Secretan, Y.; Valiquette, E.; Mingelbier, M. Deep learning habitat modeling for moving organisms in rapidly changing estuarine environments: A case of two fishes. Estuar. Coast. Shelf Sci.
**2020**, 238, 106713. [Google Scholar] [CrossRef] - Olivetti, S.; Gil, M.A.; Sridharan, V.K.; Hein, A.M. Merging computational fluid dynamics and machine learning to reveal animal migration strategies. Methods Ecol. Evol.
**2021**, 12, 1186–1200. [Google Scholar] [CrossRef] - King, I. A Two-Dimensional Finite Element Model for Flow in Estuaries and Streams; RMA-2, Users Guide; University of California: Davis, CA, USA, 1997. [Google Scholar]
- King, I. A Two-Dimensional Finite Element Model for Flow in Estuaries and Streams; Resource Modelling Associates: Sydney, NSW, Australia, 2015. [Google Scholar]
- Khojasteh, D.; Chen, S.; Felder, S.; Glamore, W.; Hashemi, M.R.; Iglesias, G. Sea level rise changes estuarine tidal stream energy. Energy
**2022**, 239, 122428. [Google Scholar] [CrossRef] - Guo, L.; Wang, Z.B.; Townend, I.; He, Q. Quantification of tidal asymmetry and its nonstationary variations. J. Geophys. Res. Ocean.
**2019**, 124, 773–787. [Google Scholar] [CrossRef] - Vibhani, T. Estuarine Tidal Response to Sea Level Rise: The Influence of Sea Level Rise on Key Estuarine Parameters. Honours Thesis, UNSW Sydney, Sydney, NSW, Australia, 2021. [Google Scholar]
- Bol, R. Effect of Deepening versus Sea Level Rise on Tidal Range in the Elbe Estuary. Bachelor’s Thesis, University of Amsterdam, Amsterdam, The Netherlands, 2014. [Google Scholar]
- Feizabadi, S.; Rafati, Y.; Ghodsian, M.; Akbar Salehi Neyshabouri, A.; Abdolahpour, M.; Mazyak, A.R. Potential sea-level rise effects on the hydrodynamics and transport processes in Hudson–Raritan Estuary, NY–NJ. Ocean. Dyn.
**2022**, 72, 421–442. [Google Scholar] [CrossRef] - Kumbier, K.; Rogers, K.; Hughes, M.G.; Lal, K.K.; Mogensen, L.A.; Woodroffe, C.D. An Eco-Morphodynamic Modelling Approach to Estuarine Hydrodynamics & Wetlands in Response to Sea-Level Rise. Front. Mar. Sci.
**2022**, 9, 613. [Google Scholar] [CrossRef] - Moftakhari, H.R.; AghaKouchak, A.; Sanders, B.F.; Feldman, D.L.; Sweet, W.; Matthew, R.A.; Luke, A. Increased nuisance flooding along the coasts of the United States due to sea level rise: Past and future. Geophys. Res. Lett.
**2015**, 42, 9846–9852. [Google Scholar] [CrossRef][Green Version] - Craft, C.; Clough, J.; Ehman, J.; Joye, S.; Park, R.; Pennings, S.; Guo, H.; Machmuller, M. Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Front. Ecol. Environ.
**2009**, 7, 73–78. [Google Scholar] [CrossRef][Green Version] - Lee, S.B.; Li, M.; Zhang, F. Impact of sea level rise on tidal range in Chesapeake and Delaware Bays. J. Geophys. Res. Ocean.
**2017**, 122, 3917–3938. [Google Scholar] [CrossRef] - Ward, S.L.; Green, J.M.; Pelling, H.E. Tides, sea-level rise and tidal power extraction on the European shelf. Ocean. Dyn.
**2012**, 62, 1153–1167. [Google Scholar] [CrossRef] - Kukulka, T.; Jay, D.A. Impacts of Columbia River discharge on salmonid habitat: 1. A nonstationary fluvial tide model. J. Geophys. Res. Ocean.
**2003**, 108. [Google Scholar] [CrossRef][Green Version] - Elahi, M.; Jalón-Rojas, I.; Wang, X.; Ritchie, E. Influence of seasonal river discharge on tidal propagation in the Ganges-Brahmaputra-Meghna Delta, Bangladesh. J. Geophys. Res. Ocean.
**2020**, 125, e2020JC016417. [Google Scholar] [CrossRef] - Wang, Z.B.; Vandenbruwaene, W.; Taal, M.; Winterwerp, H. Amplification and deformation of tidal wave in the Upper Scheldt Estuary. Ocean. Dyn.
**2019**, 69, 829–839. [Google Scholar] [CrossRef][Green Version] - Cao, Y.; Zhang, W.; Zhu, Y.; Ji, X.; Xu, Y.; Wu, Y.; Hoitink, A. Impact of trends in river discharge and ocean tides on water level dynamics in the Pearl River Delta. Coast. Eng.
**2020**, 157, 103634. [Google Scholar] [CrossRef] - Lanzoni, S.; Seminara, G. On tide propagation in convergent estuaries. J. Geophys. Res. Ocean.
**1998**, 103, 30793–30812. [Google Scholar] [CrossRef] - Ralston, D.K.; Talke, S.; Geyer, W.R.; Al-Zubaidi, H.A.; Sommerfield, C.K. Bigger tides, less flooding: Effects of dredging on barotropic dynamics in a highly modified estuary. J. Geophys. Res. Ocean.
**2019**, 124, 196–211. [Google Scholar] [CrossRef][Green Version] - Payandeh, A.R.; Justic, D.; Huang, H.; Mariotti, G.; Hagen, S.C. Tidal change in response to the relative sea level rise and marsh accretion in a tidally choked estuary. Cont. Shelf Res.
**2022**, 234, 104642. [Google Scholar] [CrossRef] - Khadami, F.; Kawanisi, K.; Al Sawaf, M.B.; Gusti, G.N.N.; Xiao, C. Spatiotemporal response of currents and mixing to the interaction of tides and river runoff in a mesotidal estuary. Ocean. Sci. J.
**2022**, 57, 37–51. [Google Scholar] [CrossRef] - Lyddon, C.; Brown, J.M.; Leonardi, N.; Plater, A.J. Flood hazard assessment for a hyper-tidal estuary as a function of tide-surge-morphology interaction. Estuaries Coasts
**2018**, 41, 1565–1586. [Google Scholar] [CrossRef][Green Version] - Prandle, D. Relationships between tidal dynamics and bathymetry in strongly convergent estuaries. J. Phys. Oceanogr.
**2003**, 33, 2738–2750. [Google Scholar] [CrossRef] - Cerralbo, P.; Grifoll, M.; Valle-Levinson, A.; Espino, M. Tidal transformation and resonance in a short, microtidal Mediterranean estuary (Alfacs Bay in Ebre delta). Estuar. Coast. Shelf Sci.
**2014**, 145, 57–68. [Google Scholar] [CrossRef] - Leuven, J.R.; Pierik, H.J.; Vegt, M.v.d.; Bouma, T.J.; Kleinhans, M.G. Sea-level-rise-induced threats depend on the size of tide-influenced estuaries worldwide. Nat. Clim. Change
**2019**, 9, 986–992. [Google Scholar] [CrossRef] - Shafiei, H.; Soloy, A.; Turki, I.; Simard, M.; Lecoq, N.; Laignel, B. Numerical investigation of the effects of distributary bathymetry and roughness on tidal hydrodynamics of Wax Lake region under calm conditions. Estuar. Coast. Shelf Sci.
**2022**, 265, 107694. [Google Scholar] [CrossRef] - Friedrichs, C.T.; Madsen, O.S. Nonlinear diffusion of the tidal signal in frictionally dominated embayments. J. Geophys. Res. Ocean.
**1992**, 97, 5637–5650. [Google Scholar] [CrossRef] - Friedrichs, C.T. Barotropic tides in channelized estuaries. Contemp. Issues Estuar. Phys.
**2010**, 27, 61. [Google Scholar] - Palmer, K.; Watson, C.; Fischer, A. Non-linear interactions between sea-level rise, tides, and geomorphic change in the Tamar Estuary, Australia. Estuar. Coast. Shelf Sci.
**2019**, 225, 106247. [Google Scholar] [CrossRef] - Jiang, L.; Gerkema, T.; Idier, D.; Slangen, A.; Soetaert, K. Effects of sea-level rise on tides and sediment dynamics in a Dutch tidal bay. Ocean. Sci.
**2020**, 16, 307–321. [Google Scholar] [CrossRef][Green Version] - Dijkstra, Y.M.; Schuttelaars, H.M.; Schramkowski, G.P.; Brouwer, R.L. Modeling the transition to high sediment concentrations as a response to channel deepening in the Ems River Estuary. J. Geophys. Res. Ocean.
**2019**, 124, 1578–1594. [Google Scholar] [CrossRef][Green Version] - Dronkers, J. Tidal asymmetry and estuarine morphology. Neth. J. Sea Res.
**1986**, 20, 117–131. [Google Scholar] [CrossRef] - Miselis, J.L.; Lorenzo-Trueba, J. Natural and human-induced variability in barrier-island response to sea level rise. Geophys. Res. Lett.
**2017**, 44, 11922–11931. [Google Scholar] [CrossRef][Green Version] - Moore, L.J.; Patsch, K.; List, J.H.; Williams, S.J. The potential for sea-level-rise-induced barrier island loss: Insights from the Chandeleur Islands, Louisiana, USA. Mar. Geol.
**2014**, 355, 244–259. [Google Scholar] [CrossRef] - Young, S.; Couriel, E.; Jayewardene, I.; McPherson, B.; Dooley, B. Case study: Assessment of the entrance stability of the Lake Illawarra Estuary. Aust. J. Civ. Eng.
**2014**, 12, 41–52. [Google Scholar] [CrossRef] - Ludt, W.B.; Rocha, L.A. Shifting seas: The impacts of Pleistocene sea-level fluctuations on the evolution of tropical marine taxa. J. Biogeogr.
**2015**, 42, 25–38. [Google Scholar] [CrossRef][Green Version] - Galbraith, H.; Jones, R.; Park, R.; Clough, J.; Herrod-Julius, S.; Harrington, B.; Page, G. Global climate change and sea level rise: Potential losses of intertidal habitat for shorebirds. Waterbirds
**2002**, 25, 173–183. [Google Scholar] [CrossRef]

**Figure 1.**Plan view of different estuarine geometries investigated in this study including prismatic (

**top**panel), converging with C

_{L}= 160 km (

**middle**panel), and converging with C

_{L}= 80 km (

**bottom**panel). All panels depict co-ordinate system, driving forces, and boundary conditions.

**Figure 2.**An example of a gridded prismatic estuary together with five different locations at x = 0, 0.25 L, 0.5 L, 0.75 L, and L, where data of water surface elevations and horizontal velocity components were extracted to calculate tidal range, maximum current velocity, and transformed skewness. Star symbols show the nodes where the flow data were extracted and examined.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Khojasteh, D.; Vibhani, T.; Shafiei, H.; Glamore, W.; Felder, S.
Application of Idealised Modelling and Data Analysis for Assessing the Compounding Effects of Sea Level Rise and Altered Riverine Inflows on Estuarine Tidal Dynamics. *J. Mar. Sci. Eng.* **2023**, *11*, 815.
https://doi.org/10.3390/jmse11040815

**AMA Style**

Khojasteh D, Vibhani T, Shafiei H, Glamore W, Felder S.
Application of Idealised Modelling and Data Analysis for Assessing the Compounding Effects of Sea Level Rise and Altered Riverine Inflows on Estuarine Tidal Dynamics. *Journal of Marine Science and Engineering*. 2023; 11(4):815.
https://doi.org/10.3390/jmse11040815

**Chicago/Turabian Style**

Khojasteh, Danial, Tej Vibhani, Hassan Shafiei, William Glamore, and Stefan Felder.
2023. "Application of Idealised Modelling and Data Analysis for Assessing the Compounding Effects of Sea Level Rise and Altered Riverine Inflows on Estuarine Tidal Dynamics" *Journal of Marine Science and Engineering* 11, no. 4: 815.
https://doi.org/10.3390/jmse11040815