Topic Editors

Dr. Guangxu Lan
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Dr. Yi-Nan Wu
College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

Porous Materials for Energy and Environment Applications

Abstract submission deadline
31 May 2024
Manuscript submission deadline
31 August 2024
Viewed by
6583

Topic Information

Dear Colleagues,

In the past few decades, traditional fossil fuels, such as coal, oil, and natural gas, have been the biggest contributors to sustainable economic development in the industrial sectors. However, the negative environmental and economic impacts of these fuels should be considered, as fossil fuels are the cause of many problems, such as environmental pollution, global warming, and economic security. For example, CO2 and other pollutant emissions, due to the burning of hydrocarbon fossil fuels, are one of main contributors to atmospheric pollution and climate change. In order to cope with the energy and environment crisis, porous materials for use in energy and environment applications are becoming one of the hot spots in industry and academia. An increasing number of researchers are entering the field, and the number of related papers is growing quickly. Thus, we are committed to providing a platform for the dissemination of high-quality papers in the field of porous materials for energy and environment applications. This Topic focuses on fundamental and applied research which could use porous materials to reduce CO2 and pollutant emissions or produce clean energy. The Topic includes but is not limited to:

  • Porous materials for CO2 capture and reduction;
  • Porous materials for pollutant gas capture;
  • Porous materials for photosynthesis and photocatalysis;
  • Porous materials for clean energy;
  • Porous materials for water purification.

Dr. Guangxu Lan
Dr. Yi-Nan Wu
Topic Editors

Keywords

  • porous materials
  • metal–organic frameworks
  • photosynthesis and photocatalysis
  • solar energy
  • clean energy
  • carbon dioxide capture and reduction
  • water purification

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Energies
energies
3.2 5.5 2008 16.1 Days CHF 2600 Submit
Materials
materials
3.4 5.2 2008 13.9 Days CHF 2600 Submit
Nanomaterials
nanomaterials
5.3 7.4 2010 13.6 Days CHF 2900 Submit
Separations
separations
2.6 2.5 2014 13.6 Days CHF 2600 Submit
Water
water
3.4 5.5 2009 16.5 Days CHF 2600 Submit

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (7 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
19 pages, 7216 KiB  
Article
Antifouling and Antioxidant Properties of PVDF Membrane Modified with Polyethylene Glycol Methacrylate and Propyl Gallate
by Ting Wang, Jun Hu, Zhengchi Hou and Haijun Yang
Materials 2024, 17(8), 1867; https://doi.org/10.3390/ma17081867 - 18 Apr 2024
Viewed by 655
Abstract
In this study, molecules of propyl gallate (PG) and polyethylene glycol methacrylate (PEGMA) were covalently bonded via a transesterification reaction and subsequently grafted onto polyvinylidene fluoride substrates using a homogeneous radiation grafting technique. The enhancement of the membranes’ hydrophilicity with the increment of [...] Read more.
In this study, molecules of propyl gallate (PG) and polyethylene glycol methacrylate (PEGMA) were covalently bonded via a transesterification reaction and subsequently grafted onto polyvinylidene fluoride substrates using a homogeneous radiation grafting technique. The enhancement of the membranes’ hydrophilicity with the increment of the grafting rate was corroborated by scanning electron microscopy imaging and measurements of the water contact angle. At a grafting degree of 10.1% and after a duration of 4 min, the water contact angle could decrease to as low as 40.1°. Cyclic flux testing demonstrated that the membranes modified in this manner consistently achieved a flux recovery rate exceeding 90% across varying degrees of grafting, indicating robust anti-fouling capabilities. Furthermore, these modified membranes exhibited significant antioxidant ability while maintaining antifouling performance over 30 days. The ability of the modified membranes to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+) free radicals remained nearly unchanged after being stored in pure water for 30 days, and the flux recovery rate remained above 95% after immersion in sodium hypochlorite solution for 30 days. Among the tested membranes, the PVDF-g-PEGMAG modified membrane with a grafting degree of 7.2% showed the best antioxidant effect. Full article
(This article belongs to the Topic Porous Materials for Energy and Environment Applications)
Show Figures

Figure 1

17 pages, 9292 KiB  
Article
Mechanically Enhanced Detoxification of Chemical Warfare Agent Simulants by a Two-Dimensional Piezoresponsive Metal–Organic Framework
by Yuyang Liu, Shiyin Zhao, Yujiao Li, Jian Huang, Xuheng Yang, Jianfang Wang and Cheng-an Tao
Nanomaterials 2024, 14(7), 559; https://doi.org/10.3390/nano14070559 - 22 Mar 2024
Viewed by 565
Abstract
Chemical warfare agents (CWAs) refer to toxic chemical substances used in warfare. Recently, CWAs have been a critical threat for public safety due to their high toxicity. Metal–organic frameworks have exhibited great potential in protecting against CWAs due to their high crystallinity, stable [...] Read more.
Chemical warfare agents (CWAs) refer to toxic chemical substances used in warfare. Recently, CWAs have been a critical threat for public safety due to their high toxicity. Metal–organic frameworks have exhibited great potential in protecting against CWAs due to their high crystallinity, stable structure, large specific surface area, high porosity, and adjustable structure. However, the metal clusters of most reported MOFs might be highly consumed when applied in CWA hydrolysis. Herein, we fabricated a two-dimensional piezoresponsive UiO-66-F4 and subjected it to CWA simulant dimethyl-4-nitrophenyl phosphate (DMNP) detoxification under sonic conditions. The results show that sonication can effectively enhance the removal performance under optimal conditions; the reaction rate constant k was upgraded 45% by sonication. Moreover, the first-principle calculation revealed that the band gap could be further widened with the application of mechanical stress, which was beneficial for the generation of 1O2, thus further upgrading the detoxification performance toward DMNP. This work demonstrated that mechanical vibration could be introduced to CWA protection, but promising applications are rarely reported. Full article
(This article belongs to the Topic Porous Materials for Energy and Environment Applications)
Show Figures

Graphical abstract

13 pages, 5063 KiB  
Article
Insight into the Storage Mechanism of Sandwich-Like Molybdenum Disulphide/Carbon Nanofibers Composite in Aluminum-Ion Batteries
by Xiaobing Wang, Ruiyuan Zhuang, Xinyi Liu, Mingxuan Hu, Panfeng Shen, Jintao Luo, Jianhong Yang and Jianchun Wu
Nanomaterials 2024, 14(5), 442; https://doi.org/10.3390/nano14050442 - 28 Feb 2024
Viewed by 703
Abstract
Aluminum-ion batteries (AIBs) have become a research hotspot in the field of energy storage due to their high energy density, safety, environmental friendliness, and low cost. However, the actual capacity of AIBs is much lower than the theoretical specific capacity, and their cycling [...] Read more.
Aluminum-ion batteries (AIBs) have become a research hotspot in the field of energy storage due to their high energy density, safety, environmental friendliness, and low cost. However, the actual capacity of AIBs is much lower than the theoretical specific capacity, and their cycling stability is poor. The exploration of energy storage mechanisms may help in the design of stable electrode materials, thereby contributing to improving performance. In this work, molybdenum disulfide (MoS2) was selected as the host material for AIBs, and carbon nanofibers (CNFs) were used as the substrate to prepare a molybdenum disulfide/carbon nanofibers (MoS2/CNFs) electrode, exhibiting a residual reversible capacity of 53 mAh g−1 at 100 mA g−1 after 260 cycles. The energy storage mechanism was understood through a combination of electrochemical characterization and first-principles calculations. The purpose of this study is to investigate the diffusion behavior of ions in different channels in the host material and its potential energy storage mechanism. The computational analysis and experimental results indicate that the electrochemical behavior of the battery is determined by the ion transport mechanism between MoS2 layers. The insertion of ions leads to lattice distortion in the host material, significantly impacting its initial stability. CNFs, serving as a support material, not only reduce the agglomeration of MoS2 grown on its surface, but also effectively alleviate the volume expansion caused by the host material during charging and discharging cycles. Full article
(This article belongs to the Topic Porous Materials for Energy and Environment Applications)
Show Figures

Figure 1

13 pages, 2256 KiB  
Article
The Effect of Rotation on Gas Storage in Nanoporous Materials
by Athanasios Ch. Mitropoulos, Ramonna I. Kosheleva, Margaritis Kostoglou and Thodoris D. Karapantsios
Separations 2024, 11(3), 72; https://doi.org/10.3390/separations11030072 - 24 Feb 2024
Viewed by 949
Abstract
Nanoporous materials offer a promising solution for gas storage applications in various scientific and engineering domains. However, several crucial challenges need to be addressed, including adsorptive capacity, rapid loading, and controlled gas delivery. A potential approach to tackle these issues is through rotation-based [...] Read more.
Nanoporous materials offer a promising solution for gas storage applications in various scientific and engineering domains. However, several crucial challenges need to be addressed, including adsorptive capacity, rapid loading, and controlled gas delivery. A potential approach to tackle these issues is through rotation-based methods. In this study, we investigate the impact of rotation on CO2 adsorption using activated carbon, both at the early and late stages of the adsorption process. Towards this direction, three sets of experiments were conducted: (i) adsorption isotherm with rotation at each gas loading, (ii) adsorption kinetics with multiple rotations performed in sequence 15 min after CO2 introduction, and (iii) adsorption kinetics with a single rotation after 40 h of adsorption and repetition after another 20 h. For the first two cases, the comparison was performed by respective measurements without rotation, while for the last case, results were compared to a theoretical pseudo-first-order kinetic curve. Our findings demonstrate that rotation enhances the adsorptive capacity by an impressive 54%, accelerates kinetics by a factor of 3.25, and enables controllable gas delivery by adjusting the angular velocity. These results highlight rotation as a promising technique to optimize gas storage in nanoporous materials, facilitating advancements in numerous scientific and engineering applications. Full article
(This article belongs to the Topic Porous Materials for Energy and Environment Applications)
Show Figures

Figure 1

19 pages, 5268 KiB  
Article
A PEGylated PVDF Antifouling Membrane Prepared by Grafting of Methoxypolyethylene Glycol Acrylate in Gama-Irradiated Homogeneous Solution
by Ting Wang, Zhengchi Hou, Haijun Yang and Jun Hu
Materials 2024, 17(4), 873; https://doi.org/10.3390/ma17040873 - 14 Feb 2024
Viewed by 647
Abstract
In this study, methoxypolyethylene glycol acrylate (mPEGA) served as a PEGylated monomer and was grafted onto polyvinylidene fluoride (PVDF) through homogeneous solution gamma irradiation. The grafting process was confirmed using several techniques, including infrared spectroscopy (FTIR), thermodynamic stability assessments, and rotational viscosity measurements. [...] Read more.
In this study, methoxypolyethylene glycol acrylate (mPEGA) served as a PEGylated monomer and was grafted onto polyvinylidene fluoride (PVDF) through homogeneous solution gamma irradiation. The grafting process was confirmed using several techniques, including infrared spectroscopy (FTIR), thermodynamic stability assessments, and rotational viscosity measurements. The degree of grafting (DG) was determined via the gravimetric method. By varying the monomer concentration, a range of DGs was achieved in the PVDF-g-mPEGA copolymers. Investigations into water contact angles and scanning electron microscopy (SEM) images indicated a direct correlation between increased hydrophilicity, membrane porosity, and higher DG levels in the PVDF-g-mPEGA membrane. Filtration tests demonstrated that enhanced DGs resulted in more permeable PVDF-g-mPEGA membranes, eliminating the need for pore-forming agents. Antifouling tests revealed that membranes with a lower DG maintained a high flux recovery rate, indicating that the innate properties of PVDF could be largely preserved. Full article
(This article belongs to the Topic Porous Materials for Energy and Environment Applications)
Show Figures

Figure 1

14 pages, 2879 KiB  
Article
Multiscale Porous Carbon Materials by In Situ Growth of Metal–Organic Framework in the Micro-Channel of Delignified Wood for High-Performance Water Purification
by Youngho Jeon, Dabum Kim, Suji Lee, Kangyun Lee, Youngsang Ko, Goomin Kwon, Jisoo Park, Ung-Jin Kim, Sung Yeon Hwang, Jeonghun Kim and Jungmok You
Nanomaterials 2023, 13(19), 2695; https://doi.org/10.3390/nano13192695 - 03 Oct 2023
Viewed by 1286
Abstract
Porous carbon materials are suitable as highly efficient adsorbents for the treatment of organic pollutants in wastewater. In this study, we developed multiscale porous and heteroatom (O, N)-doped activated carbon aerogels (CAs) based on mesoporous zeolitic imidazolate framework-8 (ZIF-8) nanocrystals and wood using [...] Read more.
Porous carbon materials are suitable as highly efficient adsorbents for the treatment of organic pollutants in wastewater. In this study, we developed multiscale porous and heteroatom (O, N)-doped activated carbon aerogels (CAs) based on mesoporous zeolitic imidazolate framework-8 (ZIF-8) nanocrystals and wood using 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation, in situ synthesis, and carbonization/activation. The surface carboxyl groups in a TEMPO-oxidized wood (TW) can provide considerably large nucleation sites for ZIF-8. Consequently, ZIF-8, with excellent porosity, was successfully loaded into the TW via in situ growth to enhance the specific surface area and enable heteroatom doping. Thereafter, the ZIF-8-loaded TW was subjected to a direct carbonization/activation process, and the obtained activated CA, denoted as ZIF-8/TW-CA, exhibited a highly interconnected porous structure containing multiscale (micro, meso, and macro) pores. Additionally, the resultant ZIF-8/TW-CA exhibited a low density, high specific surface area, and excellent organic dye adsorption capacity of 56.0 mg cm−3, 785.8 m2 g−1, and 169.4 mg g−1, respectively. Given its sustainable, scalable, and low-cost wood platform, the proposed high-performance CA is expected to enable the substantial expansion of strategies for environmental protection, energy storage, and catalysis. Full article
(This article belongs to the Topic Porous Materials for Energy and Environment Applications)
Show Figures

Figure 1

13 pages, 5250 KiB  
Article
Efficient Adsorption Removal of Phosphate from Rural Domestic Sewage by Waste Eggshell-Modified Peanut Shell Biochar Adsorbent Materials
by Cancan Xu, Rui Liu, Lvjun Chen and Quanxi Wang
Materials 2023, 16(17), 5873; https://doi.org/10.3390/ma16175873 - 28 Aug 2023
Cited by 2 | Viewed by 976
Abstract
In order to promote the improvement of the rural living environment, the treatment of rural domestic sewage has attracted much attention in China. Meanwhile, the rural regions’ sewage discharge standards are becoming increasingly stringent. However, the standard compliance rate of total phosphorus (TP) [...] Read more.
In order to promote the improvement of the rural living environment, the treatment of rural domestic sewage has attracted much attention in China. Meanwhile, the rural regions’ sewage discharge standards are becoming increasingly stringent. However, the standard compliance rate of total phosphorus (TP) is very low, and TP has become the main limiting pollutant for the water pollutants discharge standards of rural domestic sewage treatment facilities. In this study, waste eggshell (E) was employed as a calcium source, and waste peanut shell (C) was employed as a carbon source to prepare calcium-modified biochar adsorbent materials (E-C). The resulting E-C adsorbent materials demonstrated efficient phosphate (P) adsorption from aqueous solutions over the initial pH range of 6–9 and had adsorption selectivity. At an eggshell and peanut shell mass ratio of 1:1 and a pyrolysis temperature of 800 °C, the experimental maximum adsorption capacity was 191.1 mg/g. The pseudo second-order model and Langmuir model were best at describing the adsorption process. The dominant sorption mechanism for P is that Ca(OH)2 is loaded on biochar with P to form Ca5(PO4)3OH precipitate. E-C was found to be very effective for the treatment of rural domestic sewage. The removal rate of TP in rural domestic sewage was 91–95.9%. After adsorption treatment, the discharge of TP in rural sewage met the second-grade (TP < 3 mg/L) and even first-grade (TP < 2 mg/L). This study provides an experimental basis for efficient P removal by E-C adsorbent materials and suggests possible applications in rural domestic sewage. Full article
(This article belongs to the Topic Porous Materials for Energy and Environment Applications)
Show Figures

Figure 1

Back to TopTop