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Abstract: In this study, molecules of propyl gallate (PG) and polyethylene glycol methacrylate
(PEGMA) were covalently bonded via a transesterification reaction and subsequently grafted onto
polyvinylidene fluoride substrates using a homogeneous radiation grafting technique. The enhance-
ment of the membranes’ hydrophilicity with the increment of the grafting rate was corroborated by
scanning electron microscopy imaging and measurements of the water contact angle. At a grafting
degree of 10.1% and after a duration of 4 min, the water contact angle could decrease to as low as 40.1◦.
Cyclic flux testing demonstrated that the membranes modified in this manner consistently achieved
a flux recovery rate exceeding 90% across varying degrees of grafting, indicating robust anti-fouling
capabilities. Furthermore, these modified membranes exhibited significant antioxidant ability while
maintaining antifouling performance over 30 days. The ability of the modified membranes to scav-
enge 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic
acid) diammonium salt (ABTS+) free radicals remained nearly unchanged after being stored in
pure water for 30 days, and the flux recovery rate remained above 95% after immersion in sodium
hypochlorite solution for 30 days. Among the tested membranes, the PVDF-g-PEGMAG modified
membrane with a grafting degree of 7.2% showed the best antioxidant effect.

Keywords: polyvinylidene fluoride; antifouling; antioxidation; homogeneous radiation grafting;
ultrafiltration membrane

1. Introduction

As economies grow and societies progress, the role of high-performance polymer
filtration membranes gains prominence across sectors like water treatment and
biomedicine [1–8]. Among these membranes, ultrafiltration membranes are indispens-
able components that face limitations due to fouling [9–12], which impairs performance
and reduces lifespan due to oxidation during the cleaning phases [12–14]. Moreover, the
demand for these membranes to possess antioxidant properties is critical, especially in
the separation of bioactive substances to curb or eliminate oxidative stress triggered by
reactive oxygen species in procedures like hemodialysis [15–18]. Therefore, the develop-
ment of ultrafiltration membranes with enhanced antifouling and antioxidant features is of
paramount importance.

In recent years, numerous studies have proposed various modification methods to
alleviate membrane fouling issues, such as modification with inorganic ion exchangers,
oxidation of graphene, metal–organic frameworks (MOFs), and others [19–24]. Polyvinyli-
dene fluoride (PVDF) is a commonly used material for ultrafiltration membranes. There
are many research works that highlight the significant improvement in fouling resistance
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when PVDF undergoes PEGylation, enhancing the performance of membranes fabricated
from this material [25–28]. Wang et al. [25] employed the oxidative strength of ozone to
activate PVDF, creating peroxides. This step was crucial for initiating the free radical graft
polymerization process, which facilitated the grafting of polyethylene glycol methacrylate
(PEGMA) onto the PVDF structure. Such a modification markedly improved the mem-
brane’s capacity to repel protein adsorption. Through the utilization of Atom Transfer
Radical Polymerization (ATRP), Hester [26] and Liu et al. [27] developed PVDF-g-PEGMA.
Additionally, Liu et al. [27] successfully constructed a PVDF/PVDF-g-PEGMA filtration
membrane with exemplary antifouling characteristics and devoid of any defects by in-
corporating the grafted polymer as a functional additive. Previous explorations by our
research group [28] have demonstrated the efficacious grafting of methoxy polyethylene
glycol acrylate (mPEGA) onto PVDF, employing it as a PEG monomer via a homogeneous
radiation grafting technique. This grafted composite was directly utilized in membrane
formation, showcasing a water flux recovery rate that consistently remained above 90%
across three fouling cycles. Furthermore, there are studies that have also delved into im-
proving the hydrophilicity and antifouling capabilities of PVDF membranes through the
strategic incorporation of PEGylation during the surface grafting [29–32] and the membrane
fabrication process [33], thus underscoring the importance of PEGylation in enhancing
membrane functionality.

Enhancing a membrane’s hydrophilicity significantly improves its resistance to
fouling [9,34]. However, maintaining these membranes through periodic cleaning is equally
critical for extending their operational longevity and reducing expenses associated with
their use [35–40]. In the realm of maintenance, chemical cleaning stands alongside physical
methods as a vital approach, employing potent agents like hydrochloric acid (HCl), sodium
hydroxide (NaOH), and sodium hypochlorite (NaClO), notable for their robust acidic, alka-
line, and oxidizing effects, respectively [13,38,41–50]. NaClO is one of the most commonly
used chemical agents in membrane cleaning processes [51]. The durability and functional
lifespan of these membranes are heavily influenced by their capacity to withstand oxi-
dation, making oxidation resistance a pivotal characteristic [52]. Investigative efforts by
Gao et al. [43] have shed light on how different concentrations of sodium hypochlorite
impact PVDF membranes, establishing guidelines for optimal cleaning practices to ensure
filtration efficiency. Furthermore, Zhang et al. [34] have provided insights through compar-
ative studies on the susceptibility of PVDF and polysulfone ultrafiltration membranes to
damage and performance degradation when exposed to sodium hypochlorite solutions.

Derived from tannin hydrolysis, gallic acid (GA) is a polyphenolic compound with
a spectrum of biological activities, including anti-inflammatory, antioxidant, and antibac-
terial properties [53–59]. In the realm of membrane technology, GA has been the fo-
cus of various studies. Employing a one-step dip-coating technique, Yang et al. [60]
fabricated a hydrophilic PVDF membrane with GA and gamma-aminopropyltriethoxysilane,
which exhibited remarkable hydrophilicity and antifouling characteristics.
Through biomimetic coating, Cheng et al. [61] demonstrated the creation of a porous
nanofiltration (NF) membrane via the Schiff base reaction, linking GA’s phenolic group
with the amino group of polyethyleneimine. Additionally, Zhao et al. [62] synthesized a
GA-modified polyethyleneimine layer on a hydrolyzed polyacrylonitrile base using a
co-deposition method.

To enhance the antioxidative capabilities of filter membranes, numerous studies have
integrated a variety of antioxidants directly into the membrane material [63]. Addressing
the challenges associated with the migration of antioxidant molecules and their extraction
by solvents during application, several researchers have explored chemically bonding
antioxidants to the membrane surface [64,65]. However, reports on antioxidative modifica-
tions applied to PEGylated filter membranes remain absent from the literature.

In this study, a dual-functional PVDF membrane endowed with both antifouling and
antioxidative properties was successfully developed. The initial phase involved a transes-
terification process between propyl gallate (PG) and PEGMA. Following this reaction, the
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incorporation of PVDF into the mixture led to the formation of PVDF-g-PEGMAG through
a homogeneous radiation grafting method. The fabrication of ultrafiltration membranes
was achieved using the technique of non-solvent-induced phase separation (NIPS). The
degree of grafting (DG) was determined using the gravimetric method. Furthermore,
the grafted product underwent molecular structural analysis through FTIR spectroscopy.
Assessments of the membrane’s surface morphology, hydrophilicity, and filtration capacity
were conducted utilizing SEM, water contact angle measurements, and water flux tests,
respectively. The antifouling properties of the membrane were rigorously evaluated by
filtering a solution of BSA and subsequently measuring the recovery rate of water flux fol-
lowing a cleansing process. The membrane’s antioxidant efficacy was determined through
its ability to scavenge DPPH and APTS+ free radicals, with additional tests conducted to
ascertain the longevity of these antioxidative characteristics by submerging the membrane
in distilled water for an extended duration. Lastly, the resilience of the modified PVDF
membrane against oxidative challenges was rigorously assessed by exposing it to a sodium
hypochlorite solution over a specified timeframe, thereby evaluating its long-term oxida-
tion resistance. This comprehensive study illustrates the potential of PVDF-g-PEGMAG
membranes in applications requiring robust antifouling and antioxidative functionalities.

2. Materials and Methods
2.1. Materials

The PVDF powder (Solef 6020, Mn = 670,000) was purchased from Solvay Co.,
Ltd. (Qingdao, China). Polyethylene glycol methyl acrylate (PEGMA), 2,2-diphenyl-
1-picrylhydrazyl (DPPH), and 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) di-
ammonium salt (ABTS+) were obtained from Sigma-Aldrich Trading Co., Ltd. (Shanghai,
China). Propyl gallate (PG), p-toluenesulfonic acid (TsOH), N,N-dimethylformamide
(DMF), polyvinylpyrrolidone (PVP-K30), sodium chloride (NaCl), disodium hydrogen
phosphate (Na2HPO4), potassium chloride (KCl), potassium dihydrogen phosphate
(KH2PO4), hydrochloric acid (HCl), sodium hypochlorite solution (NaClO), bovine serum
albumin (BSA), anhydrous ethanol, and potassium persulfate (K2S2O8) were purchased
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). The PVDF powder was
washed three times with ultrapure water before use and dried at 80 ◦C for 24 h in a vacuum
oven. All chemical reagents were used without further purification. Additionally, water
purified through a Milli-Q system from Millipore was employed.

2.2. Synthesis of Graft Copolymer

A mixture of PEGMA and TsOH was placed into a reaction flask, subsequently heated
to 120 ◦C in an oil bath with ongoing stirring. Following this, PG was incrementally
introduced to the mixture while stirring persisted. This reaction was conducted over a
span of four hours, with vacuum application for one minute at each hour to eliminate
volatiles. Once the reaction phase concluded and the mixture had cooled, PVDF and DMF
were added, followed by stirring at 70 ◦C for a full day to achieve a homogenous solution.
After cooling to ambient temperature, nitrogen gas was purged into the flask for thirty
minutes before sealing. The samples were then subjected to γ-radiation from a 60Co source,
with a dose of 20 kGy for 18 h at room temperature. After irradiation, the solution was
slowly transferred into an ethanol solution for precipitation. Through repeated rinsing and
washing in ethanol, unreacted substances and homopolymers were removed. The final
step involved drying the precipitate in a vacuum oven at 80 ◦C until reaching a constant
weight to yield PVDF-g-PEGMAG. The reagent quantities used are specified in Table 1.
The schematic diagram of the study is shown in Figure 1.
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Table 1. The formula for synthesizing PVDF-g-PEGMAG.

No. PEGMA/g TsOH/g PG/g PVDF/g DMF/g Total/g

1 3 0.08 4.24 5 37.68 50
2 5 0.08 7.07 5 32.85 50
3 9 0.08 12.72 5 24 50
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Figure 1. Schematic diagram of the synthesis/fabrication process.

The degree of grafting (DG) of PVDF-g-PEGMAG is defined in Equation (1):

DG =
W1 − W0

W0
× 100% (1)

where W1 denotes the mass of PVDF-g-PEGMAG and W0 is the mass of pristine PVDF.

2.3. Fourier Transform Infrared Spectroscopy Characterization

ATR-IR spectroscopy analyses were conducted for pristine polyvinylidene fluoride
(PVDF), PVDF-g-PEGMA, and PVDF-g-PEGMAG samples utilizing a Nicolet Avatar 370
infrared spectrometer (Thermo Nicolet Instrument Corporation, Madison, WI, USA). The
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spectral data collection covered a wavelength range from 400 cm−1 to 4000 cm−1 with
a resolution set at 4 cm−1. Each spectrum acquisition involved 32 repetitive scans to
ensure accuracy. Given the challenges associated with pulverizing the grafted polymer, a
membrane approach was adopted for preparing the samples, consistent with methodologies
described in preceding research [28].

2.4. Preparation of Membrane

The membranes were fabricated using the non-solvent-induced phase separation
(NIPS) method. The composition of the casting solution encompassed a polymer con-
centration of 15 wt.%, a porogen PVP-K30 at 4 wt.%, and the solvent DMF constituting
81 wt.%. Utilization of a casting knife facilitated the even distribution of the casting solution
across a glass plate, targeting a uniform film thickness of 200 µm. The solution underwent
brief evaporation in the ambient atmosphere for 15 s, followed by immersion in deionized
water. To assure the thorough elimination of any residual solvents, the membrane was
meticulously preserved in water for a duration of two days, during which the water was
refreshed multiple times before any testing commenced.

2.5. Dynamic Water Contact Angle Measurement

Contact angle measurements of the membrane were carried out using the Attension
Theta system (KSV Instruments Ltd., Helsinki, Finland). For this process, droplets, each
measuring 5 µL, were carefully dispensed onto the membrane’s surface from a needle’s tip.
Over a 4 min duration, a digital camera captured the interaction between the droplet and
the membrane surface in video format. Subsequently, specialized software in the system
analyzed these video recordings to determine the contact angle values.

2.6. Analysis of Scanning Electron Microscope

Morphological analysis of the membrane was conducted using a LEO1530vp SEM
(Zeiss, Jena, Germany). To prepare the membrane for examination, it was first subjected to
rapid freezing in liquid nitrogen, followed by a brittle fracture to reveal the cross-section.
The images obtained were then analyzed with ImageJ software (National Institutes of
Health, Bethesda, MD, USA, v1.8.0), allowing for the quantification of pores, as well as the
measurement of pore size and distribution across a given unit area.

2.7. Filtering Experiment

The membrane’s performance was assessed using the identical cross-flow apparatus
utilized in prior experiments, as depicted in Figure 2 [28]. Each membrane was fashioned
into a circular specimen boasting a 15.9 cm2 surface area and underwent a pre-compression
process at 0.1 MPa for a duration of 20 min. For each type of membrane, a set of three
independent trials was conducted. The flux measurement involved the quantification of
the solution volume passing through the membrane over a specified period, subsequently
normalized to the membrane’s surface area.

The water flux (F0) was calculated according to Equation (2):

F0 =
Q

A∆T
(2)

where Q refers to the volume of the filtered water; A, the area of the membrane; and ∆T,
the time of the filtration.

In this study, a BSA buffer solution at a concentration of 1 g/L was selected as the
model for pollutant testing, employing the same buffer preparation protocol established in
preceding experiments. Samples were collected both before and after the filtration process
to facilitate subsequent analysis. The quantification of BSA concentration within the
solution was accurately performed using a UV-1100 visible ultraviolet spectrophotometer
(Beijing Ruili Instrument Co., Ltd., Beijing, China), in accordance with methodologies cited
in the reference literature [66].
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2.8. Evaluation of Antifouling Performance of Membrane

The evaluation of the membrane’s antifouling capability was conducted by measuring
the pure water flux recovery rate following the filtration of a BSA solution. In the cross-flow
filtration setup, the feed solution was alternated between pure water and the BSA buffer
solution every 60 min. After completing three cycles of this process, the recovery rate of
water flux through the membrane was determined.

The flux recovery ratio (FRR) is calculated according to Equation (3):

FRR =
F1

F0
× 100% (3)

where F0 and F1 denote the water flux prior to and following fouling, respectively.

2.9. Evaluation of the Oxidation Resistance of the Membrane

The antioxidative properties of the membrane were evaluated from two perspec-
tives. Firstly, the membrane’s ability to scavenge DPPH and ABTS+ radicals was assessed.
Secondly, the membrane’s resistance to oxidation in NaClO solution was evaluated.

2.9.1. Free Radical Scavenging Effect

A solution of DPPH (0.1 mM) was formulated using anhydrous ethanol. Subsequently,
membrane samples, each measuring 1 × 1 cm2, were submerged in 3 mL of this DPPH
solution and left to incubate for 1 h in a dark environment at room temperature. As a
control, a DPPH solution without any membrane sample underwent identical treatment.
The absorbance of these solutions was then recorded at a wavelength of 517 nm.

To prepare the ABTS+ radical cation solution (0.1 mM), a mixture of ABTS+ solution
(2 mL, 7 mM) and potassium persulfate (K2S2O8) solution (2 mL, 2.45 mM), diluted with
pure water, was allowed to stand for 12 h in the dark at 4 ◦C. This solution was subsequently
adjusted with anhydrous ethanol to achieve an absorbance of 0.700 ± 0.025. Each membrane
sample, again measuring 1 × 1 cm2, was immersed in 4 mL of the ABTS+ solution and left
for 20 min in a dark environment at room temperature. The absorbance of this solution
was measured at 734 nm.



Materials 2024, 17, 1867 7 of 19

Equation (4) for calculating the scavenging rate of the membranes against these two
free radicals is presented as follows:

Scavenging =
A0 − A1

A0
× 100% (4)

where A0 represents the absorbance of the control sample devoid of the membrane, while A1
signifies the absorbance recorded for the solution containing various membrane samples.

The enduring stability of antioxidant capabilities holds considerable relevance for
the practical application of antioxidant membranes. To assess this, membrane samples
measuring 1 × 1 cm2 were submerged in distilled water for a duration of 30 days. The ef-
ficiency of these membranes in scavenging free radicals was determined at intervals—on the
1st, 7th, 14th, and 30th days, to gauge the long-term retention of their
antioxidant attributes.

2.9.2. Oxidation Resistance of Membrane to NaClO Solution

Initially, a variety of membranes were submerged in a NaClO solution with a con-
centration of 0.2 wt% for a duration of 30 days, with the NaClO solution being refreshed
daily to maintain consistent concentration levels. The performance of each membrane, in
terms of water flux and BSA rejection rates, was documented on the 1st, 7th, 14th, and
30th days. Furthermore, a modified membrane, possessing a DG of 8.6%, was also im-
mersed in the NaClO solution for 30 days. Following this period, it was thoroughly rinsed
with pure water, and a circulation flux test was conducted. The resistance of the membrane
to oxidation by NaClO solution was assessed based on these two investigative approaches.

3. Results and Discussion
3.1. FTIR Spectra of Graft Copolymer

Figure 3 illustrates the infrared spectra of the pristine PVDF alongside various grafted
polymers, following vector normalization. Among these, PVDF-g-PEGMA, with a DG
of 8.9%, was synthesized by directly grafting PEGMA onto PVDF using the previously
described homogeneous radiation grafting technique [28]. Notably, both grafted polymers
displayed a new characteristic absorption peak at 1712 cm−1, indicative of the carbonyl
(C=O) group present in PEGMA [67]. When comparing PVDF-g-PEGMA to PVDF-g-
PEGMAG, the latter exhibited subtle signals corresponding to phenolic hydroxyl groups
and benzene rings, characteristic of PG molecules, in the range of 3300–3600 cm−1 and at
around 1610 cm−1, respectively [68]. These spectral features confirm the successful grafting
of PEGMA and PG onto the PVDF chain, resulting in the synthesis of PVDF-g-PEGMAG.
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3.2. Dynamic Water Contact Angle Test

Figure 4 displays the dynamic water contact angles of both the pristine PVDF and
the PVDF-g-PEGMAG membranes with varying degrees of grafting. The water contact
angle for the unmodified PVDF remained consistently above 95◦, indicating pronounced
hydrophobicity. For the PVDF-g-PEGMAG membranes, an increase in the degree of grafting
correlated with an increase in the water contact angle, signifying enhanced hydrophilicity
and, consequently, improved surface wetting. Notably, at a grafting degree of 10.1% and
after a duration of 4 min, the water contact angle could decrease to as low as 40.1◦. This
demonstrates a substantial enhancement in hydrophilicity for the grafted polymers in
comparison to the pristine PVDF. It was observed that the addition of PG segments to the
PEGylated PVDF materials did not alter their hydrophilic properties.
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3.3. Morphology Characterization of Membrane

Figure 5 presents the surface and cross-sectional images of membranes with varying
grafting ratios, alongside a pore size distribution histogram derived from the surface
images using ImageJ software (v1.8.0). The images reveal that each membrane exhibits an
asymmetric structure characterized by finger-like pores. The membrane surface pore sizes
are 27.650 nm, 28.432 nm, 30.923 nm, and 32.072 nm in Figure 5a–d, respectively. With an
increase in grafting ratio, there is a noticeable enlargement in pore size on the membrane
surface, and the cross-sectional views begin to show larger pores more prominently [69,70].
In general, an NIPS process generates a dense skin and porous sub-layer. The dense surface
is formed due to the solidification of the polymer top layer induced by a fast solvent
outflow, and the porous sub-layer is induced from the liquid–liquid demixing where the
solution phase separates into a polymer-lean phase and a polymer-rich phase [71]. The
pore formation in the NIPS process may be attributed to the rapid diffusion of solvent into
the non-solvent (water), while the non-solvent does not permeate as swiftly through the
interface between the casting solution and water, generating significant tension within the
final membrane matrix, thus forming the distinctive finger-like pores. As the grafting ratio
rises, the diffusion rate of the non-solvent (water) accelerates, making the macroscopic
pore structure in the membrane matrix more pronounced in the cross-sectional area [72].
Moreover, at the same polymer weight percentage, a higher grafting ratio implies a greater
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content of grafting segments and, consequently, a lower concentration of pure PVDF in the
polymer. This results in a quicker solvent diffusion rate and, subsequently, larger pores in
the modified membrane [73].
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3.4. Evaluation of Filtration Performance and Antifouling Performance of Membrane

Figure 6 illustrates the comparison of water flux and BSA rejection between the pristine
PVDF membranes and those modified with PVDF-g-PEGMAG at various DG. The graph
demonstrates that, as the DG increases, so does the water flux through the membrane. This
observation aligns with findings from previous contact angle tests, which indicated an
enhancement in membrane hydrophilicity concurrent with rising DG levels. Enhanced
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hydrophilicity leads to diminished filtration resistance, thereby facilitating increased flux.
Additionally, this elevation in water flux corresponds with the morphological attributes
identified in the membrane, such as the expansion in pore size on the membrane surface and
the emergence of larger pores within the membrane cross-section. The BSA rejection rates
for all the membranes hovered around 90%, indicating the effectiveness of the modified
membranes, crafted using grafted polymers, in maintaining robust filtration performance.
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In this study, an in situ measurement technique was employed, integrating online
cleaning of the membrane via a cross-flow filtration method. This process entailed alter-
nating the fluid composition, specifically switching between water and a BSA solution.
Figure 7 illustrates the results from antifouling cycle tests on membranes with varying DG.
Specifically, Figure 7a depicts the fouling and cleaning flux of the membrane across multiple
cycles, whereas Figure 7b presents the FRR derived from the data in Figure 7a. During the
cleaning phase, consistent trends in flux variation were observed among different modified
membranes, with a notable increase in flux upon switching the feed to pure water. After
three cycles (420 min) of testing, the flux of pure water post-cleaning remained relatively
unchanged, with only a minor reduction observed during the initial cycle. Conversely,
the pristine PVDF membrane exhibited a significant flux decline upon the initial switch
to pure water. Furthermore, the FRR values calculated from the flux data indicated a
significant decrease in the FRR of the pristine PVDF membrane during the first cycle,
with a continued decline over the subsequent two cycles. In contrast, the FRRs for the
modified membranes consistently exceeded 90% and remained stable through later cycles,
suggesting that higher FRR values correlate with enhanced membrane stability and superior
antifouling performance. The antifouling cycle tests comprehensively demonstrate the
superior antifouling capabilities of the modified membranes.
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3.5. Oxidation Resistance of the Membrane
3.5.1. Free Radical Scavenging Effect of Membrane

Figure 8 demonstrates the efficiency of different types of membranes in scavenging
DPPH and ABTS+ free radicals. The membranes modified with PG segments, PVDF-g-
PEGMAG, showcased a significantly higher free radical scavenging capacity compared
to both the pristine PVDF and the PVDF-g-PEGMA. This superior scavenging ability
highlights the impactful role of the PG segments in enhancing the membrane’s antioxidative
properties. Furthermore, variations in the grafting rate appeared to have a minimal impact
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on the membranes’ ability to neutralize free radicals. This observation could be attributed
to the fact that the grafting rate mentioned in this study reflects the combined grafting of
both PG and PEGMA segments onto the membrane. During the synthesis of the grafted
polymer with a DG of 10.1%, a larger quantity of PEGMA segments was introduced onto
the PVDF chain compared to PEGMAG, due to the higher proportion of PEGMA, thereby
leading to a slight decrease in the membrane’s free radical scavenging rate compared to the
membrane with DG = 7.2%.
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Figure 9 illustrates the durability of DPPH and ABTS+ free radical scavenging by
various membrane types. The stability of the membrane’s antioxidative performance is
a parameter that needs to be considered during the normal usage of the membrane. In
this investigation, the antioxidant stability of the membranes was assessed based on their
ability to neutralize free radicals after being submerged in pure water for an extended
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duration. The data indicate that the scavenging efficiency for both types of free radicals
diminished only marginally after a 30-day immersion period in pure water. This experi-
ment underscores that the modified membranes possess not just a measure of resistance
to oxidation, but also maintain considerable stability in their antioxidative properties
over time.
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3.5.2. Oxidation Resistance of Membrane to NaClO Solution

To investigate the influence of an oxidizing agent on membranes post-grafting of
PG segments, membranes, including PVDF-g-PEGMA (with a DG of 8.9%) and PVDF-g-
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PEGMAG with various DG, were immersed in a sodium hypochlorite (NaClO) solution
(2 wt.%) for a set duration. The impact on membrane filtration performance was assessed
through variations in water flux and bovine serum albumin (BSA) rejection rate over time.
Previous reports on the effect of hypochlorite treatment on UF membranes indicated a
flux increase in NaClO-treated membranes [12,14]. Specifically, the PVDF-g-PEGMAG
membrane with a DG of 8.6% was analyzed to compare its circulation flux before and
after a 30-day immersion in NaClO solution. The antifouling efficacy of the membrane
was appraised by comparing the FRR before and after the 30-day exposure to oxidation.
Figure 10 reveals that, after 30 days of exposure to the oxidizing environment, the water flux
through the PVDF-g-PEGMA membrane increased, while its BSA rejection rate dropped
below 80%, indicating a significant detriment to its filtration performance due to oxidation.
Conversely, the water flux and BSA rejection rates for PVDF-g-PEGMAG membranes with
various DG remained largely stable after the 30-day oxidation period. This suggests that
the PG segment grafting effectively mitigated the oxidation impact on PEGylated PVDF
membranes. Figure 11 displays the antifouling cycle test results for the PVDF-g-PEGMAG
membrane with a DG of 8.6%, both before and after undergoing oxidation treatment for
30 days. It is observed that the flux of the membrane post-oxidation closely mirrors the
FRR prior to oxidation, maintaining stability across three cycles. This outcome indicates
that the antifouling properties of the modified membrane were well-preserved even after
30 days of exposure to oxidizing conditions.
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4. Conclusions

In this study, the PG segment was initially bonded to the PEGMA molecule through
a transesterification process. Subsequently, this complex was grafted onto PVDF using a
homogeneous radiation grafting technique to create PVDF-g-PEGMAG, which incorporates
both antioxidant (PG segment) and antifouling (PEGMA segment) functionalities.

The membrane of the grafted polymer was fabricated by employing the NIPS method.
Analysis of the membrane’s surface and cross-section via SEM alongside water contact
angle measurements revealed that the hydrophilicity of the membrane enhanced as the
DG increased. The pore size of the membrane increased with the increase in grafting
rate. Specifically, for the modified membrane with a grafting rate of 10.1%, the pore size
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expands from 27.650 nm in the original PVDF membrane to 32.072 nm. Additionally, after
a duration of 4 min, the water contact angle of the membrane could decrease to as low as
40.1◦. Cyclic flux testing of the membrane indicated that introducing the PG segment to the
modified membrane did not detract from the excellent antifouling capabilities inherent to
PEGylated PVDF membranes. In tests of circulation flux across membranes with varying
DG, the FRR consistently exceeded 90%. Moreover, the antioxidant performance tests
demonstrated that the modified membrane retained its capacity to scavenge DPPH and
ABTS+ free radicals, with its efficacy largely unaffected by prolonged immersion in water.
After soaking in pure water for 30 days, the modified membrane exhibited only a slight
decrease in scavenging rates for both DPPH and ABTS+ free radicals, maintaining them
at above 60% and 70%, respectively. Additionally, the PG grafting significantly bolstered
the membrane’s resistance to oxidation, enabling it to maintain antifouling performance;
even after a 30-day immersion in a NaClO solution, the flux recovery rate remained
above 95%, thus illustrating the membrane’s durability against oxidation during chemical
cleaning processes.

This study successfully developed a membrane that exhibits both antifouling and
antioxidative properties, highlighting its long-term effectiveness and stability. Although
further research is needed to assess the membrane’s tolerance to other chemical clean-
ing methods, such as acid–base treatments, to differentiate the proportion of functional
components in the grafted product, and to elucidate the mechanism of antioxidation.
However, the simplicity and potential scalability of the membrane fabrication process
make it a viable option from an industrial perspective. The membrane exhibits promis-
ing potential for applications in water treatment and the membrane-based separation of
bioactive substances.
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