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Abstract: Chemical warfare agents (CWAs) refer to toxic chemical substances used in warfare.
Recently, CWAs have been a critical threat for public safety due to their high toxicity. Metal–organic
frameworks have exhibited great potential in protecting against CWAs due to their high crystallinity,
stable structure, large specific surface area, high porosity, and adjustable structure. However, the metal
clusters of most reported MOFs might be highly consumed when applied in CWA hydrolysis. Herein,
we fabricated a two-dimensional piezoresponsive UiO-66-F4 and subjected it to CWA simulant
dimethyl-4-nitrophenyl phosphate (DMNP) detoxification under sonic conditions. The results show
that sonication can effectively enhance the removal performance under optimal conditions; the
reaction rate constant k was upgraded 45% by sonication. Moreover, the first-principle calculation
revealed that the band gap could be further widened with the application of mechanical stress, which
was beneficial for the generation of 1O2, thus further upgrading the detoxification performance
toward DMNP. This work demonstrated that mechanical vibration could be introduced to CWA
protection, but promising applications are rarely reported.

Keywords: piezoresponsive metal–organic frameworks; chemical warfare agent detoxification;
mechanical energy harvesting

1. Introduction

Chemical warfare agents (CWAs) refer to various chemical substances with severe
toxicity used for war purposes, capable of poisoning or killing enemy humans, animals,
and plants on a large scale. In recent years, CWAs have been one of the crucial means for
terrorists and extremist organizations to enforce terrorist activities and war activities due
to their large killing ability, wide working range, strong concealment, and low cost [1–3].
Consequently, due to their terrible toxicity, the quick detoxification of CWAs has become
one of the critical demands in preventing CWA attacks [4,5]. To deal with CWAs, conven-
tional methods include adsorption and chemical reaction methods [6–8]. The adsorption
method presents good universality; however, the removal performance largely relies on
the adsorption capacity of the adsorbents (e.g., activated carbon). Moreover, after reaching
saturation, there is a large degree of desorption, which is potentially dangerous, thus
hindering its further application in protective equipment [9–11]. The chemical reaction
method exhibits the great advantage of permanent detoxification. Recently, most of the
commonly used disinfectants have included oxidizing chlorinated disinfectants, alkaline
disinfectants, etc. [12–15]. However, various problems also exist such as low efficiency,
strong corrosivity, storage difficulties over long periods of time, and serious environmental
pollution. Moreover, the consumption of these disinfectants is always huge; it is difficult
to carry them in military operations, and it is also not easy to integrate them into military
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personal protective equipment. Therefore, developing new detoxification materials is
urgently needed to guard against potential threats from chemical warfare agents [16–18].

In recent years, researchers have made great efforts in developing new detoxifica-
tion materials, especially materials with catalytic properties, such as biological enzymes,
anionic polyoxometalates, nano metal oxides, amphiphilic polyoxometalates, etc. These
materials show a certain degree of detoxification ability; however, a variety of demerits
limit their further promotion and application. For instance, biological enzymes exhibit high
cost; the pore structure of metal oxides is relatively inferior; simultaneously, the surface
chemical properties of metal oxides are usually ultrastable and are hard to modify, thus
leading to the active adsorption ability of metal oxides to chemical warfare agents being
insufficient [17,19–21]. To achieve the ideal detoxification effect, the designed material
needs the following key properties. Firstly, the material needs an outstanding pore struc-
ture to provide more active sites and larger space for further modification. Secondly, the
chemical structure of the material is adjustable and easy to modify, so that the bandgap
width, affinity, and application range can be controlled. Moreover, the material needs to
have the characteristic of utilizing external driving energy to enhance its reusability and be
able utilize external driving forces to achieve and accelerate the catalytic process during
detoxification; then, the crystals can be well preserved even after many cycles of use.

Metal–organic frameworks (MOFs) are porous crystalline materials assembled by
the coordination of metal clusters and organic ligands [22–25]. They have outstanding
advantages of high crystallinity, stable structure, large specific surface area, high porosity,
and adjustable structure, which give them broad application prospects in various fields,
such as adsorption, drug delivery, sensing, and photocatalysis [26–29]. MOFs are also
regarded as some of the ideal detoxification materials for CWAs and have had significant
outcomes in the field of detoxification, greatly improving detoxification efficiency and
largely shortening the half-life of the CWAs. However, the active sites are easy to inactivate
in the detoxifying process, which severely hinders their further application. External
driving energy is urgently required to be employed to transfer to chemical energy, which
can detoxify CWAs. Most reported works developed photocatalytic MOFs to harvest solar
energy, which were applied in the degradation of pollutants and CWA simulants, for
instance, PCN-222, Cu-TCPP, NU-1000, etc. [30–33]. However, the working performance of
photoresponsive MOFs is largely limited by the weather and daytime duration. Mechanical
energy is one of the most common forms of energy in nature, and piezocatalysis has been
emerging as a promising alternative technology for organic pollutant removal, as it can
harvest various mechanical energies including vibrations, wind, and water waves from the
surrounding environment [34–38]. However, the mechanically enhanced detoxification of
CWAs by piezoresponsive MOFs has rarely been reported [39].

Herein, we fabricated a two-dimensional UiO-66-F4 by the microwave-assisted hy-
drothermal method and subjected it to CWA simulant detoxification under mechanical
vibration. The obtained UiO-66-F4 presented ultrathin nanosheets with a thickness of ~5 nm
and a large specific surface area of 331.827 m2/g. It also showed outstanding piezoresponse
capacity in an ultrasonic environment; the amplitude displacement of UiO-66-F4 could
reach ~50 mV under a 10 V DC bias field. Consequently, it could effectively harvest me-
chanical energy and transfer it to chemical energy, thus effectively detoxifying the CWAs.
Under optimal conditions, the UiO-66-F4 could detoxify almost all of the DMNP within
60 min, and the half-time of the DMNP was 10.58 min, which was much shorter than
that under stirring conditions. The detoxification capacity was also excellent compared
to other reported materials. Simultaneously, the reaction constant k was upgraded by
45% by the mechanical vibration. The first-principle calculation revealed the polarization
behavior of the MOF crystals and the widening of the band gap under mechanical stress.
This work demonstrated that CWAs could be mechanically detoxified by a piezorespon-
sive MOF, which provides great prospects for protection against CWAs of personnel in a
toxic environment.
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2. Materials and Methods
2.1. Chemicals

Tetrafluoroterephthalic acid (BDC-F4) was bought from Yanshen Chemistry (Jilin,
China). Zirconium chloride (ZrCl4), methanol, absolute ethanol, N,Ndimethylformamide
(DMF), and glacial acetic acid (HAc) were bought from Macklin (Shanghai, China). Thy-
molphthalein, sodium hydroxide (NaOH), zinc oxide (ZnO), and N-Ethylmorpholine were
bought from Aladdin (Shanghai, China). Dimethyl-4-nitrophenyl phosphate (DMNP) was
synthesized by our lab, and the chemical structure is displayed in Figure S1b.

2.2. Characterizations

The morphology of the UiO-66-F4 was observed by field emission scanning electron
microscopy (SEM, Zeiss Merlin, Oberkochen, Germany) with a working voltage of 10 kV
and transmission electron microscopy (TEM, JEOL JEM F200, Tokyo Metropolitan, Japan)
with a working voltage of 300 kV. The crystallinity was analyzed through a powder X-ray
diffraction pattern which was recorded by a polycrystalline diffractometer (Rigaku Mini-
Flex 600, Tokyo, Japan) with Cu Kα radiation (λ = 0.154 nm). The Fourier transform
infrared (FTIR) spectra were recorded by a PerkinElmer Spectrum-II spectrometer (Welles-
ley, MA, USA) with KBr pellets. The elements’ valence status was investigated through
X-ray photoelectronic spectroscopy (XPS) which was conducted by a Thermo ESCALAB
250XI (Waltham, MA, USA) fitted with Al Kα radiation, and all the binding energy was
referenced as the C 1s peak at 284.8 eV. The surface area and porosity were analyzed by
Brunauer–Emmett–Teller (BET) and Horvath–Kawazoe (HK) methods, respectively, using
a Quantachrome Autosorb IQ (Boynton Beach, FL, USA) instrument. The thickness and
piezoresponse capacity were measured through atom force microscopy (AFM) and piezore-
sponse force microscopy (PFM) by a Bruker-Icon (Billerica, MA, USA) with a working
probe (MESP, coefficient of elasticity 2 N/m, resonance frequency 75 Hz) and polarization
voltage of 10 V, respectively. The size distribution and zeta potential were collected by
a Nanotrac Wave II (Microtrac MRB, Clearwater, FL, USA). The ultraviolet and visible
spectrum (UV-Vis) was measured by a UV-5200 (Metash, Shanghai, China) with a working
wavelength range of 200–800 nm.

2.3. Assembly of UiO-66-F4

The UiO-66-F4 was assembled by a previously described method [38]. Typically,
85.9 mg BDC-F4 was added to 50 mL mixed solution (water/HAc = 30/20). After sonication
for 5 min, 75 mg ZrCl4 was added, followed by continuous sonication for 10 min. Right
after, the mixed solution was placed in a microwave oven and heated at 100 ◦C for 4 h. The
obtained precipitates were washed by DMF and ethanol, respectively, 3 times, followed
by drying in a vacuum oven for 8 h at 80 ◦C. The resulting powder was referred to as
UiO-66-F4.

2.4. Removal Experiments

First 4.0 mL N-Ethylmorpholine and 13 mg as-prepared UiO-66-F4 were added to a
centrifugal tube (50 mL) and ultrasonicated for 5 min till the UiO-66-F4 uniformly dispersed
in the solution. Then, the tube was placed on a magnetic stirrer with a working speed
of 600 rpm. Then, 16 µL of DMNP was injected in the mixture by a microinjector and
the stirring speed was maintained. After certain time interval, the MOF particles were
separated by a filter, then, 20 µL of the mixture was taken out and diluted to 10 mL to
test the concentration of the DMNP. The time intervals were set as 0, 1, 3, 5, 10, 20, 30, 40,
60, and 100 min. When testing the piezoelectric degradation efficiency, the stirring was
replaced by sonication with a frequency of 45 kHz. As the DMNP was decomposed into
p-nitrophenol, the concentration of the DMNP was inferred by the concentration of the
p-nitrophenol which can be detected by UV-Vis with characteristic wavelength of 407 nm.
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2.5. Calculation Method

The calculations were performed using the first-principle calculation implemen-
tation of CASTEP (Materials Studio 2020) [40]. The generalized gradient approxima-
tion (GGA) with the Perdew–Burke–Ernzerhof (PBE) formula was employed for the
exchange–correlation potential [41,42]. The Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method was used to search for the ground state of the supercells, and the convergence
tolerance was set to energy change below 10−5 eV per atom, force less than 0.02 eV Å−1,
stress less than 0.05 GPa, and displacement change less than 0.001 Å. The cutoff energy of
the atomic wave functions was set to 450 eV.

3. Results
3.1. Assembly and Characterizations

After 4 h of incubation through microwave-assisted heating, two-dimensional UiO-
66-F4 nanosheets were successfully obtained. Firstly, the morphology of the as-prepared
sample was examined through the utilization of SEM, TEM, and AFM techniques. The
SEM image demonstrates the sample’s remarkable homogeneity (Figure 1a), while the en-
larged SEM image reveals that nearly all UiO-66-F4 clusters comprise interlaced nanosheets
measuring approximately 200 nm in size (Figure 1b). The TEM image provides stronger
evidence for this conclusion (Figure 1c). Furthermore, both the TEM image and the high-
resolution TEM image reveal that the nanosheets appear transparent under fluorescent
irradiation, indicating their ultrathin nature. However, upon observation using high-
resolution TEM (Figure 1d), the crystal lattice was not clearly visible, indicating a relatively
small crystal size. Consequently, this led to inferior crystallinity, which aligns with numer-
ous reported UiO-66-type MOFs [43,44]. In order to further investigate the composition
of the sample, the distribution of corresponding elements within a specific area was mea-
sured. The results exhibit a remarkable coincidence in the distributions of C, O, F, and Zr
(Figure 1e,i), indicating a coordinated interaction between the Zr clusters and ligands. To
accurately measure the thickness of the nanosheets, an atomic force microscope (AFM) was
utilized. The results indicate that the sample is composed of multiple nanosheets, as de-
picted in Figure 1j. Subsequently, a specific region was selected for thickness measurement
of the nanosheets, indicated by the white line in Figure 1j. The resulting height data reveal
that the thickness of these nanosheets is approximately 5 nm, as shown in Figure 1k.

To further illustrate the compacted structure, a collection of size distributions was
gathered. The results reveal that the peak on the curve begins at approximately 200 nm and
attains its maximum at around 500 nm, indicating that the measured average size was ap-
proximately 500 nm (Figure 2a). This aggregation is primarily attributed to the remarkable
tendency of the nanomaterial to aggregate, with multiple nanosheets coalescing into larger
particles. When measuring, the equipment was capable of detecting only the particles
and not single petals. Additionally, the zeta potential reveals that the weighted average
potential is approximately 34.2 mV, indicating the nanosheet’s remarkable hydrophilicity
(Figure 2b). The porous structure was examined through the N2 adsorption–desorption
curve and the distribution of pore sizes, as depicted in Figure 2c. The results indicate that
the specific surface area is as impressive as 331.827 m2/g, aligning with our previously
reported findings [38,44]. Furthermore, the weighted average pore diameter has been
measured at 0.9 nm, as depicted in Figure 2d. To investigate the crystal structure of the
sample, an XRD analysis was performed. The results demonstrate that the planes of the
synthesized UiO-66-F4 align well with the simulated data (Figure 2e). Notably, the plane of
(002) merges with the plane of (111), resulting in a single crystal plane. This observation
suggests that the crystals in UiO-66-F4 exhibit a uniform crystal plane orientation. The
XRD pattern further elucidates the disparities between UiO-66-F4 synthesized in this study
and those reported in numerous prior works [38]. To investigate the coordination mode
of the carboxylic acid group, FTIR spectra were collected for the ligands of UiO-66-F4, as
carboxylate can exhibit distinct coordination modes that would result in variations in the
corresponding spectrum. The broad peak from 2000–3200 cm−1 of the ligand is ascribed to
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the O−H and C=O stretching modes, and it disappears due to the full deprotonation and
reduction of the ligand after the coordination process [45]. Moreover, the FTIR spectra of
UiO-66-F4 samples reveal two characteristic peaks located at around 1637 and 1407 cm−1,
which correspond to the C=O symmetric and asymmetric stretching vibration. The two
peaks with ∆ > 200 cm−1 (νas − νs = 230 cm−1, Figure 2f) indicate that the carboxylate
ligands adopted a bridging bidentate coordination mode [46,47].
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To gain a deeper understanding of the coordination mode, XPS analysis was employed
to investigate the valence states of the elements within the ligands and metal clusters, as
depicted in Figure S2. The peak of the C species can be resolved into three distinct peaks,
located at 284.7, 287.2, and 288.8 eV (Figure 3a), which are ascribed to C-C/C=C, C=O, and
C-C=O, respectively [48,49]. The O atoms serve as a crucial constituent of clusters, with the
deconvoluted peak of O 1s assigned to specific energy levels of 530.3, 531.6, and 533.2 eV,
which are ascribed to C=O, O-metal (O-Zr), and O vacancy (Figure 3b), respectively [50,51].
And a distinct peak appears at 687.2 eV on the spectrum of F 1s (Figure 3c), which is
attributed to the presence of C-F bonds, thus demonstrating the F did not attend the
coordination. The Zr 3d spectra exhibits a spin–orbit doublet that splits into 182.5 and
184.5 eV, which is ascribed to 3d5/2 and 3d3/2 (Figure 3d) [43,52], respectively, strongly
demonstrating the formation of [Zr6O4(OH)4(–COO)12] in the frameworks [38,53–55].
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Based on the aforementioned results, a putative coordination pathway can be inferred.
BDC-F4 is a is a strictly symmetric dicarboxylic acid, with two carboxyl groups situated on
opposite sides of the benzene ring, thereby offering two coordination sites. The FTIR and
XPS spectra obtained after the assembly process unambiguously reveal the presence of a
bridging bidentate coordination mode between the ligand and the [Zr6O4(OH)4(–COO)12].
Utilizing these findings, we propose a mechanism for the formation of 2D UiO-66-F4
nanosheets, which is schematically illustrated in Figure 4. Utilizing microwave heating
at 100 ◦C, the carboxyl group of BDC-F4 gradually interacted with Zr ions, as depicted in
Figure 4a. This interaction led to the formation of [Zr6O4(OH)4(–COO)12] clusters, which
are illustrated in Figure 4b. Subsequently, these clusters and ligands combined periodically
to develop a network structure, shown in Figure 4c. Finally, through the addition of
regulators and solvents to unsaturated coordination sites, the network was compacted and
folded into 2D nanosheets, as seen in Figure 1b. Conventionally, the synthesis of UiO-66-
type MOFs via hydrothermal methods entails prolonged reaction durations exceeding four
days. However, our approach utilizes microwave irradiation to rapidly precipitate Zr ions
with ligands, favoring the formation of nanosheets. This method offers a straightforward
and remarkably swift pathway for the large-scale production of 2D UiO-66-F4 MOFs.
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3.2. Mechanically Enhanced Detoxification Performance

The as-prepared UiO-66 nanosheets were introduced to detoxify the CWA simu-
lant. Firstly, we investigated the mechanical property of the fabricated nanosheets by
piezoresponse force microscopy (PFM). The phase hysteresis loop and amplitude loop were
measured to evaluate the polarization degree of the MOF crystals. As reported, for the
two hysteresis loops, the lower the overlap between the blue and red lines, the higher the
degree of MOF crystal polarization [56,57]. As shown in Figure 5a, the sample exhibits
well-defined 180◦ phase-reversal hysteresis, demonstrating a characteristic polarization
switching behavior of the as-prepared MOF. Furthermore, a typical amplitude–voltage
butterfly loop is obtained under a 10 V DC bias field (Figure 5b). The larger amplitude
displacement of UiO-66-F4 (~47 mV) indicates a stronger piezoelectric response than that
of most reported UiO-66-type MOFs. Herein, the introduction of the F4-BDC2− linker that
coordinated weakly to the Zr(IV) metal centers might have caused a strong polarity in the
UiO-66-type MOFs. In addition, the strong hydrogen bonding between F and µ3-OH can
also lead to a large polarization of the nanosheets [37,38,58].
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Subsequently, we subjected the fabricated MOF to CWA detoxification. Given the
severe toxicity of sarin (as demonstrated in Figure S1a) and the necessity to conduct rel-
evant experiments in high-standard laboratories, we chose DMNP as a representative of
nerve agent simulants. As reported, DMNP can undergo hydrolysis to form p-Nitrophenol.
Consequently, the detoxification performance of the prepared MOF can be evaluated by
monitoring the concentration change in p-Nitrophenol [1]. The results indicate that, in a
sonic environment, the conversion remains relatively unchanged after 100 min, indicating
that the DMNP lacks self-degradation capabilities under stirring or ultrasonic conditions
(Figure 6e). When UiO-66-F4 is added to the catalytic system, the UV-Vis characteristic peak
of DMNP gradually diminishes, while the peak of p-Nitrophenol concurrently increases (as
shown in Figure 6a) under stirring conditions, which indicates that DMNP is efficiently
hydrolyzed into p-Nitrophenol. In sonic conditions, UiO-66-F4 demonstrates a superior
hydrolysis efficiency compared to stirring conditions. Furthermore, the hydrolysis model
aligns more closely with first-order reaction kinetics [59]. To more clearly investigate the
hydrolysis performance under varying conditions, the introduction of the reaction rate
constant, k, is employed [44]. The values are calculated as 0.040 and 0.058 min−1 for stirring
and sonic conditions (Figure 6b,d), respectively, and the k is upgraded 45% by sonication
with the addition of the UiO-66-F4. Furthermore, the half-life time has been reduced from
13.61 min to 10.58 min, as demonstrated in Figure 6f. This significant reduction further
underscores the ability of sonication to enhance the hydrolysis performance of UiO-66-F4.
ZnO is a prototypical inorganic material that exhibits remarkable piezocatalysis properties
across diverse fields, making it a highly versatile and responsive material [60,61]. To fur-
ther validate the distinct piezocatalysis characteristics of the UiO-66-F4 material prepared,
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ZnO was incorporated to assess the hydrolysis performance of alternative piezoresponse
materials. However, the findings reveal that ZnO exhibits minimal catalytic activity for the
hydrolysis of DMNP, even under sonication conditions (Figure 6e). Notably, the half-life
of DMNP extends to 1487 min, indicating that conventional piezoelectric materials are
ineffective at converting mechanical energy into chemical energy during the removal of
DMNP. These results demonstrate that DMNP can be efficiently removed by piezorespon-
sive MOFs, aided by mechanical vibration. Additionally, the detoxification performance
of UiO-66-F4 was compared with various reported materials, revealing that the approach
utilized in this study exhibits comparable detoxification efficiency (Table 1).
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Table 1. The comparison with the reported materials.

Catalysts t1/2 (min) k (min−1) Ref.

PP/TiO2/UiO-66-NH2 15 -- [62]
Zr(OH)4@PIM-1-Coat 12.6 0.055 [63]
UiO-66-NH2/PAN 10 -- [64]
Ce-BDC 8.0 0.087 [65]
MOF@PDMAEA@LiCl@PNIPAM >60 -- [66]
MIP/UiO-66-NH2-0.5 9.4 -- [67]
UiO-66-F4 10.58 0.058 This work

To gain a deeper comprehension of the alterations that occur under mechanical stress, a
theoretical calculation was undertaken to emulate the responses exhibited by MOF crystals.
The results initially reveal that the crystals maintain their integrity even when subjected to
significant mechanical stress (Figure 7), indicating that MOF crystals possess remarkable
stability, even under extreme conditions. Furthermore, the Z projection and side view of the
MOFs’ crystal structure reveal significant deformation. Specifically, the crystal has shrunk
by approximately 5% in the direction of applied stress. Nevertheless, the metal cluster
and the benzene ring of the ligand retain rigidity, resisting distortion. This deformation is
primarily attributed to the rotation of carboxyl groups on the ligands’ benzene rings, as
evident from the side view of the crystal structure.
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Moreover, the band gap structure determined the generation of radical oxidation
species (ROS) [68–70]. We also investigated the band gap changes in the MOFs under stress
(Figure 8a,b). The results indicate that the band gap is 2.313 eV, which aligns closely with
our prior research [38]. Upon the application of mechanical stress, the compressive strain
notably altered the band gap structure, resulting in an increase to 2.405 eV. Simultaneously,
the bands in the valence zone exhibit a significant increase under stress, as illustrated
in Figure 8b. This observation underscores the fact that the band gap structure can be
effectively modulated by mechanical stress [71,72]. The density of states (DOS) analysis
offered deeper understanding of the distinct bands’ origins, as illustrated in Figure 8c.
Notably, the application of mechanical stress caused the peak value at the Fermi level to
increase. Concurrently, the conduction band shifted slightly towards the high-energy level,
leading to an expansion in the band gap. This observation aligns well with the calculated
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band gap results. The CB primarily aligns with the Zr 3d electrons or with orbitals that
are delocalized throughout the entire linker (as shown in Figure S3), demonstrating a
relatively low sensitivity to the functional group. Moreover, the application of mechanical
stress causes the polarization to increase at an accelerated rate. Consequently, a novel VB’
emerges, significantly broadening the band gap (Figure 9b).
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Drawing upon the aforementioned results and preceding research, a preliminary band
diagram can be established (Figure 9). During the assembly process of UiO-66-F4, the
absence or unsaturated coordination of Zr-O clusters can lead to a significant number of
metal node or ligand defects, ultimately endowing UiO-66-F4 with remarkable catalytic
capabilities, even without any external assistance. When the UiO-66-F4 nanosheets are
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employed for the removal of CWA simulants, the unsaturated coordination sites can
directly react with the ester group of DMNP, thereby achieving the aim of detoxification [1].
After the application of mechanical vibration, the band gap of the nanocrystals widens
significantly, leading to the polarization effect. Consequently, a substantial number of free
charges (e−) are generated on the catalyst surface, efficiently reacting with O2 to form O•−

2 .
On the one hand, partial O•−

2 can target the phosphoester bonds (O-P), thereby facilitating
the hydrolysis of DMNP as depicted in Figure 9c. On the other hand, O•−

2 can expedite
the generation of additional 1O2 through interaction with residual holes (h+), which can
further oxidatively degrade the hydrolysate [73–77].

4. Conclusions

In this study, we successfully fabricated two-dimensional UiO-66-F4 nanosheets us-
ing a microwave-assisted method. These nanosheets exhibit an ultrathin thickness of
approximately 5 nm and possess a large specific surface area of 331.827 m2/g. These
nanosheets possess remarkable mechanical-energy-harvesting capabilities and have the
potential to be utilized in the mechanically enhanced detoxification of CWA simulant
DMNP. Under optimal conditions, the half-life of DMNP is 10.58 min, and mechanical
vibration can significantly enhance its removal performance by approximately 45%. The
first-principle simulation unveils the structural transformations within MOF crystals. The
mechanical stress potentially influences the rotation angle of the carboxyl groups within the
tetrafluoroterephthalic acid, potentially leading to slight deformations along the direction
of pressure. Subsequently, this could broaden the band gap and reinstate the band gap
structure of the crystals. All the stress-induced changes are advantageous for enhancing
the detoxification capacity of UiO-66-F4, thereby illustrating the efficacy of mechanical
vibration in detoxifying CWAs. This study offers a novel perspective for defending against
CWAs through innovative approaches.
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6. Nawala, J.; Jóźwik, P.; Popiel, S. Thermal and Catalytic Methods Used for Destruction of Chemical Warfare Agents. Int. J. Environ.
Sci. Technol. 2019, 16, 3899–3912. [CrossRef]

7. Jouypazadeh, H.; Farrokhpour, H. DFT and TD-DFT Study of the Adsorption and Detection of Sulfur Mustard Chemical Warfare
Agent by the C24, C12Si12, Al12N12, Al12P12, Be12O12, B12N12 and Mg12O12 Nanocages. J. Mol. Struct. 2018, 1164, 227–238.
[CrossRef]

8. Tomchenko, A.A.; Harmer, G.P.; Marquis, B.T. Detection of Chemical Warfare Agents Using Nanostructured Metal Oxide Sensors.
Sens. Actuators B Chem. 2005, 108, 41–55. [CrossRef]

9. Liu, Y.; Howarth, A.J.; Vermeulen, N.A.; Moon, S.Y.; Hupp, J.T.; Farha, O.K. Catalytic Degradation of Chemical Warfare Agents
and Their Simulants by Metal-organic Frameworks. Coord. Chem. Rev. 2016, 346, 101–111. [CrossRef]

10. Kiani, S.; Farooq, A.; Ahmad, M.; Irfan, N.; Nawaz, M.; Irshad, M. Impregnation on Activated Carbon for Removal of Chemical
Warfare Agents (CWAs) and Radioactive Content. Environ. Sci. Pollut. Res. 2021, 28, 60477–60494. [CrossRef]

11. Matito-Martos, I.; Moghadam, P.Z.; Li, A.; Colombo, V.; Navarro, J.A.R.; Calero, S.; Fa, D. Discovery of an Optimal Porous
Crystalline Material for the Capture of Chemical Warfare Agents. Chem. Mater. 2018, 30, 4571–4579. [CrossRef]

12. Li, J.; Singh, V.V.; Sattayasamitsathit, S.; Orozco, J.; Kaufmann, K.; Dong, R.; Gao, W.; Jurado-Sanchez, B.; Fedorak, Y.; Wang, J.
Water-Driven Micromotors for Rapid Photocatalytic Degradation of Biological and Chemical Warfare Agents. ACS Nano 2014, 8,
11118–11125. [CrossRef]

13. Picard, B.; Chataigner, I.; Maddaluno, J.; Legros, J. Introduction to Chemical Warfare Agents, Relevant Simulants and Modern
Neutralisation Methods. Org. Biomol. Chem. 2019, 17, 6528–6537. [CrossRef] [PubMed]

14. Xiao, L.; Bing, Y. Trace Detection of Organophosphorus Chemical Warfare Agents in Wastewater and Plants by Luminescent
UIO-67(Hf) and Evaluating the Bioaccumulation of Organophosphorus Chemical Warfare Agents. ACS Appl. Mater. Interfaces
2018, 10, 14869–14876. [CrossRef]

15. Peterson, G.W.; Wagner, G.W. Detoxification of Chemical Warfare Agents by CuBTC. J. Porous Mater. 2014, 21, 121–126. [CrossRef]
16. Couzon, N.; Dhainaut, J.; Campagne, C.; Royer, S.; Loiseau, T.; Volkringer, C. Porous Textile Composites (PTCs) for the Removal

and the Decomposition of Chemical Warfare Agents (CWAs)-A Review. Coord. Chem. Rev. 2022, 467, 214598. [CrossRef]
17. Snider, V.G.; Hill, C.L. Functionalized Reactive Polymers for the Removal of Chemical Warfare Agents: A Review. J. Hazard.

Mater. 2023, 442, 130015. [CrossRef] [PubMed]
18. Chauhan, S.; Chauhan, S.; D’Cruz, R.; Faruqi, S.; Singh, K.K.; Varma, S.; Singh, M.; Karthik, V. Chemical Warfare Agents. Environ.

Toxicol. Pharmacol. 2008, 26, 113–122. [CrossRef] [PubMed]
19. Black, R.M. History and Perspectives of Bioanalytical Methods for Chemical Warfare Agent Detection. J. Chromatogr. B 2010, 878,

1207–1215. [CrossRef]
20. Eubanks, L.M.; Dickerson, T.J.; Janda, K.D. Technological Advancements for the Detection of and Protection Against Biological

and Chemical Warfare Agents. Chem. Soc. Rev. 2007, 36, 458–470. [CrossRef]
21. Balasubramanian, S.; Kulandaisamy, A.J.; Babu, K.J.; Das, A.; Balaguru Rayappan, J.B. Metal Organic Framework Functionalized

Textiles as Protective Clothing for the Detection and Detoxification of Chemical Warfare Agents—A Review. Ind. Eng. Chem. Res.
2021, 60, 4218–4239. [CrossRef]

22. Hong-Cai, Z.; Long, J.R.; Omar, M.Y. Introduction to Metal–Organic Frameworks. Chem. Rev. 2012, 112, 673–674. [CrossRef]
23. Zhou, H.C.; Kitagawa, S. Metal–Organic Frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [CrossRef]
24. Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-organic Frameworks. Science

2013, 341, 974. [CrossRef] [PubMed]
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