Polymer-Based Nano-Sorbent Materials

A special issue of Polymers (ISSN 2073-4360).

Deadline for manuscript submissions: closed (28 February 2018)

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
Interests: polymers; host–guest chemistry; hydration effects; adsorption phenomena; molecular recognition
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is focused on the current state-of-the-art of in (bio)polymer materials for sorption applications. The use of polymeric materials in sorption-based processes is widespread, ranging from environmental remediation and catalysis, to chemical separations, green chemistry; stabilization and storage of materials, and phase transfer processes.

Papers are sought that discuss the latest research in the area or summarize selected areas of the field. The scope of the Special Issue encompasses the synthesis and characterization of polymer/biopolymer materials for sorption-based processes and applications, polysaccharides, nanoporous polymer materials, polymer nanoparticles, polymer nanocomposites and hybrid assemblies.

Of particular interest are new polymer structures and functions that result from the synthesis and processing of natural/synthetic polymer materials (and modified forms) that provide new insights on the structure–sorption property relationships that lead to enhanced functionality.

Prof. Dr. Lee D. Wilson
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • functional nano-sorbents
  • thermodynamic/kinetic sorption properties
  • homogeneous/heterogeneous sorption processes
  • (bio)polymers, polysaccharides, and modified forms
  • pore structure and physicochemical properties
  • synthesis and characterization
  • structure-function properties
  • hydration processes
  • sorption phenomena

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 4107 KiB  
Article
Adsorption of Polyelectrolyte onto Nanosilica Synthesized from Rice Husk: Characteristics, Mechanisms, and Application for Antibiotic Removal
by Tien Duc Pham, Thu Thuy Bui, Van Thanh Nguyen, Thi Kieu Van Bui, Thi Thuy Tran, Quynh Chi Phan, Tien Dat Pham and Thu Ha Hoang
Polymers 2018, 10(2), 220; https://doi.org/10.3390/polym10020220 - 23 Feb 2018
Cited by 72 | Viewed by 10339
Abstract
Adsorption of the polyelectrolyte polydiallyldimethylammonium chloride (PDADMAC) onto nanosilica (SiO2) fabricated from rice husk was studied in this work. Nanosilica was characterized by X-ray diffraction, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Adsorption of PDADMAC onto SiO2 increased [...] Read more.
Adsorption of the polyelectrolyte polydiallyldimethylammonium chloride (PDADMAC) onto nanosilica (SiO2) fabricated from rice husk was studied in this work. Nanosilica was characterized by X-ray diffraction, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Adsorption of PDADMAC onto SiO2 increased with increasing pH because the negative charge of SiO2 is higher at high pH. Adsorption isotherms of PDADMAC onto silica at different KCl concentrations were fitted well by a two-step adsorption model. Adsorption mechanisms of PDADMAC onto SiO2 are discussed on the basis of surface charge change, evaluation by ζ potential, surface modification by FTIR measurements, and the adsorption isotherm. The application of PDADMAC adsorption onto SiO2 to remove amoxicillin antibiotic (AMX) was also studied. Experimental conditions such as contact time, pH, and adsorbent dosage for removal of AMX using SiO2 modified with PDADMAC were systematically optimized and found to be 180 min, pH 10, and 10 mg/mL, respectively. The removal efficiency of AMX using PDADMAC-modified SiO2 increased significantly from 19.1% to 92.3% under optimum adsorptive conditions. We indicate that PDADMAC-modified SiO2 rice husk is a novel adsorbent for removal of antibiotics from aqueous solution. Full article
(This article belongs to the Special Issue Polymer-Based Nano-Sorbent Materials)
Show Figures

Graphical abstract

22 pages, 16947 KiB  
Article
Facile Synthesis, Characterization of Poly-2-mercapto-1,3,4-thiadiazole Nanoparticles for Rapid Removal of Mercury and Silver Ions from Aqueous Solutions
by Shaojun Huang, Chengzhang Ma, Chao Li, Chungang Min, Ping Du, Yi Xia, Chaofen Yang and Qiuling Huang
Polymers 2018, 10(2), 150; https://doi.org/10.3390/polym10020150 - 06 Feb 2018
Cited by 10 | Viewed by 4001
Abstract
Industrial pollution by heavy metal ions such as Hg2+ and Ag+ is a universal problem owing to the toxicity of heavy metals. In this study, a novel nano-adsorbent, i.e., poly-2-mercapto-1,3,4-thiadiazole (PTT), was synthesized and used to selectively adsorb mercury and silver [...] Read more.
Industrial pollution by heavy metal ions such as Hg2+ and Ag+ is a universal problem owing to the toxicity of heavy metals. In this study, a novel nano-adsorbent, i.e., poly-2-mercapto-1,3,4-thiadiazole (PTT), was synthesized and used to selectively adsorb mercury and silver ions from aqueous solutions. PTT nanoparticles were synthesized via chemical oxidative dehydrogenation polymerization under mild conditions. Oxidant species, medium, monomer concentration, oxidant/monomer molar ratio, and polymerization temperature were optimized to obtain optimum yields. The molecular structure and morphology of the nanoparticles were analyzed by ultraviolet-visible (UV-Vis), Fourier transform infrared (FT-IR), matrix-assisted laser desorption/ionization/time-of-flight (MALDI/TOF) mass and X-ray photoelectron (XPS) spectroscopies, wide-angle X-ray diffraction (WAXD), theoretical calculations and transmission electron microscopy (TEM), respectively. It was found that the polymerization of 2-mercapto-1,3,4-thiodiazole occurs through head-to-tail coupling between the S(2) and C(5) positions. The PTT nanoparticles having a peculiar synergic combination of four kinds of active groups, S–, –SH, N–N, and =N– with a small particle size of 30–200 nm exhibit ultrarapid initial adsorption rates of 1500 mg(Hg)·g−1·h−1 and 5364 mg(Ag)·g−1·h−1 and high adsorption capacities of up to 186.9 mg(Hg)·g−1 and 193.1 mg(Ag)·g−1, becoming ultrafast chelate nanosorbents with high adsorption capacities. Kinetic study indicates that the adsorption of Hg2+ and Ag+ follows the pseudo-second-order model, suggesting a chemical adsorption as the rate-limiting step during the adsorption process. The Hg2+ and Ag+-loaded PTT nanoparticles could be effectively regenerated with 0.1 mol·L−1 EDTA or 1 mol·L−1 HNO3 without significantly losing their adsorption capacities even after five adsorption–desorption cycles. With these impressive properties, PTT nanoparticles are very promising materials in the fields of water-treatment and precious metals recovery. Full article
(This article belongs to the Special Issue Polymer-Based Nano-Sorbent Materials)
Show Figures

Graphical abstract

Back to TopTop