Polymer Composite Materials for Energy Storage

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 20 July 2024 | Viewed by 7235

Special Issue Editor

Special Issue Information

Dear Colleagues,

Due to the fast depletion of fossil fuels and increasingly serious environmental issues, sustainable renewable energy conversion devices have triggered great attention, as have energy storage devices. Recently, carbon-based nanomaterials have been extensively studied as excellent candidates for electrochemical energy storage applications due to their high conductivity, chemical stability, enhanced surface area, and excellent electrical properties. As a result, they have attracted increasing attention among the scientific community. Generally, the electrochemical storage properties of polymer-based composite materials are highly associated with the designs of their nanoarchitectures. Efforts have been made to develop novel and improved methods of carbon nanomaterials synthesis, allowing for desired parameters to be obtained (morphology, nanotexture, surface composition, etc.), resulting in differences in their chemical and physical properties and thus their electrochemical performances. This scientific field is blooming with many new ideas and discoveries, identifying at the same time challenges that need to be thoroughly studied and overcome in the future.

 This Special Issue will focus on discussing the synthesis, design, development, and fundamental advances of various polymer-based nanoarchitectures for applications in electrochemical energy storage. We invite researchers to submit their original results on relevant topics. Many types of contributions, including full-length research articles, review articles, and short communications, are highly welcome.

Prof. Dr. Wei-Ren Liu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • supercapacitors
  • Li-ion batteries
  • Na-ion batteries
  • Zn-ion batteries
  • solid batteries
  • fuel cells

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 5262 KiB  
Article
Metal-Doped NASICON/Polymer Composite Solid Electrolyte for Lithium Titania Anode in Lithium-Ion Batteries
by Chien-Te Hsieh, Tzu-Shaing Cho, Jeng-Kuei Chang and Jagabandhu Patra
Polymers 2024, 16(9), 1251; https://doi.org/10.3390/polym16091251 - 30 Apr 2024
Abstract
This study reports five types of metal-doped (Co, Cu, Sn, V, and Zr) NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP)/polymer composite solid electrolytes (CSEs) enabling Li4Ti5O12 (LTO) anodes to have high rate capability [...] Read more.
This study reports five types of metal-doped (Co, Cu, Sn, V, and Zr) NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP)/polymer composite solid electrolytes (CSEs) enabling Li4Ti5O12 (LTO) anodes to have high rate capability and excellent cycling performance. The high Li+-conductivity LATP samples are successfully synthesized through a modified sol–gel method followed by thermal calcination. We find that the cation dopants clearly influence the substitution of Al for Ti, with the type of dopant serving as a crucial factor in determining the ionic conductivity and interfacial resistance of the solid electrolyte. The CSE containing poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and Sn-LATP shows an ionic conductivity of 1.88 × 10−4 S cm−1 at ambient temperature. The optimum conductivity can be attributed to alterations in the lattice parameters and Li+ transport pathways owing to Sn doping. The solid-state cell equipped with the LTO-supported CSE containing Sn-LATP fillers demonstrates both excellent high rate capability at 5 C (with a capacity retention of 86% compared to the value measured at 0.2 C) and superior cycling stability, maintaining high Coulombic efficiency (>99.0%) over 510 cycles. These findings indicate that the proposed CSE is highly promising for use in solid-state lithium batteries with desirable charge–discharge properties and high durability. Full article
(This article belongs to the Special Issue Polymer Composite Materials for Energy Storage)
Show Figures

Figure 1

13 pages, 2685 KiB  
Article
ARGET-ATRP-Mediated Grafting of Bifunctional Polymers onto Silica Nanoparticles Fillers for Boosting the Performance of High-Capacity All-Solid-State Lithium–Sulfur Batteries with Polymer Solid Electrolytes
by Liang Wang, Junyue Huang, Yujian Shen, Mengqi Ma, Wenhong Ruan and Mingqiu Zhang
Polymers 2024, 16(8), 1128; https://doi.org/10.3390/polym16081128 - 17 Apr 2024
Viewed by 441
Abstract
The shuttle effect in lithium–sulfur batteries, which leads to rapid capacity decay, can be effectively suppressed by solid polymer electrolytes. However, the lithium-ion conductivity of polyethylene oxide-based solid electrolytes is relatively low, resulting in low reversible capacity and poor cycling stability of the [...] Read more.
The shuttle effect in lithium–sulfur batteries, which leads to rapid capacity decay, can be effectively suppressed by solid polymer electrolytes. However, the lithium-ion conductivity of polyethylene oxide-based solid electrolytes is relatively low, resulting in low reversible capacity and poor cycling stability of the batteries. In this study, we employed the activator generated through electron transfer atom transfer radical polymerization to graft modify the surface of silica nanoparticles with a bifunctional monomer, 2-acrylamide-2-methylpropanesulfonate, which possesses sulfonic acid groups with low dissociation energy for facilitating Li+ migration and transfer, as well as amide groups capable of forming hydrogen bonds with polyethylene oxide chains. Subsequently, the modified nanoparticles were blended with polyethylene oxide to prepare a solid polymer electrolyte with low crystallinity and high ion conductivity. The resulting electrolyte demonstrated excellent and stable electrochemical performance, with a discharge-specific capacity maintained at 875.2 mAh g−1 after 200 cycles. Full article
(This article belongs to the Special Issue Polymer Composite Materials for Energy Storage)
Show Figures

Graphical abstract

17 pages, 3006 KiB  
Article
Resistive Memory-Switching Behavior in Solution-Processed Trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) Benzene–PVA-Composite-Based Aryl Acrylate on ITO-Coated PET
by Rachana Kamath, Parantap Sarkar, Sindhoora Kaniyala Melanthota, Rajib Biswas, Nirmal Mazumder and Shounak De
Polymers 2024, 16(2), 218; https://doi.org/10.3390/polym16020218 - 12 Jan 2024
Viewed by 683
Abstract
Resistive switching memories are among the emerging next-generation technologies that are possible candidates for in-memory and neuromorphic computing. In this report, resistive memory-switching behavior in solution-processed trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) benzene–PVA-composite-based aryl acrylate on an ITO-coated PET device was studied. A sandwich configuration was selected, [...] Read more.
Resistive switching memories are among the emerging next-generation technologies that are possible candidates for in-memory and neuromorphic computing. In this report, resistive memory-switching behavior in solution-processed trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) benzene–PVA-composite-based aryl acrylate on an ITO-coated PET device was studied. A sandwich configuration was selected, with silver (Ag) serving as a top contact and trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) benzene–PVA-composite-based aryl acrylate and ITO-PET serving as a bottom contact. The current–voltage (I–V) characteristics showed hysteresis behavior and non-zero crossing owing to voltages sweeping from positive to negative and vice versa. The results showed non-zero crossing in the devices’ current–voltage (I–V) characteristics due to the nanobattery effect or resistance, capacitive, and inductive effects. The device also displayed a negative differential resistance (NDR) effect. Non-volatile storage was feasible with non-zero crossing due to the exhibition of resistive switching behavior. The sweeping range was −10 V to +10 V. These devices had two distinct states: ‘ON’ and ‘OFF’. The ON/OFF ratios of the devices were 14 and 100 under stable operating conditions. The open-circuit voltages (Voc) and short-circuit currents (Isc) corresponding to memristor operation were explained. The DC endurance was stable. Ohmic conduction and direct tunneling mechanisms with traps explained the charge transport model governing the resistive switching behavior. This work gives insight into data storage in terms of a new conception of electronic devices based on facile and low-temperature processed material composites for emerging computational devices. Full article
(This article belongs to the Special Issue Polymer Composite Materials for Energy Storage)
Show Figures

Figure 1

12 pages, 5706 KiB  
Article
Preventing the Distortion of CoO6 Octahedra of LiCoO2 at High-Voltage Operation of Lithium-Ion Battery: An Organic Surface Reinforcement
by Fu-Ming Wang
Polymers 2023, 15(9), 2211; https://doi.org/10.3390/polym15092211 - 06 May 2023
Cited by 1 | Viewed by 1608
Abstract
Lithium cobalt oxide (LiCoO2, LCO) has been widely used in electronic markets due to its high energy density and wide voltage range applications. Recently, high-voltage (HV, >4.5 V) operation has been required to obey the requirements of high energy density and [...] Read more.
Lithium cobalt oxide (LiCoO2, LCO) has been widely used in electronic markets due to its high energy density and wide voltage range applications. Recently, high-voltage (HV, >4.5 V) operation has been required to obey the requirements of high energy density and cycle life in several applications such as electric vehicles and energy storage. However, the HV operation causes structure instability due to the over de-lithiation of LCO, as well as decomposing common carbonate solvents, thereby incurring the decay of battery performance. Moreover, a distortion of the CoO6 octahedra of LCO during de-lithiation induces a rehybridization of the Co 3d and O 2p orbitals. According to above reasons, decreasing the Co-O covalent bond promptly triggers high risks that significantly limit further use of LCO. In this research, an organic surface reinforcement by using bismaleimide–uracil (BU) that electrochemically forms a cathode electrolyte interphase (CEI) on LCO was explored. The results of electrochemical impedance spectroscopy and battery performance, such as the c-rate and cyclability tests, demonstrated that the modified CEI formed from BU significantly prevents the distortion of CoO6 octahedra. X-ray photoelectronic spectroscopy and in situ XAS indicated less LiF formation and higher bond energy of Co-O improved. Finally, the differential scanning calorimetry showed the onset temperature of decomposition of LCO was extended from 245 to 270 °C at 100% state of charge, which is about a 25 °C extension. The exothermic heat of LCO decreased by approximately 30% for high-safety use. This research confirms that the BU is eligible for high voltage (>4.5 V) LCO and presents outstanding electrochemical properties and safety performances. Full article
(This article belongs to the Special Issue Polymer Composite Materials for Energy Storage)
Show Figures

Figure 1

14 pages, 7996 KiB  
Article
Effects of Butadiene Sulfone as an Electrolyte Additive on the Formation of Solid Electrolyte Interphase in Lithium-Ion Batteries Based on Li4Ti5O12 Anode Materials
by Yu-Ruei Kung, Cheng-Yao Li, Panitat Hasin, Chia-Hung Su and Jeng-Yu Lin
Polymers 2023, 15(8), 1965; https://doi.org/10.3390/polym15081965 - 21 Apr 2023
Cited by 2 | Viewed by 1648
Abstract
In this study, butadiene sulfone (BS) was selected as an efficient electrolyte additive to stabilize the solid electrolyte interface (SEI) film on the lithium titanium oxide (LTO) electrodes in Li-ion batteries (LIBs). It was found that the use of BS as an additive [...] Read more.
In this study, butadiene sulfone (BS) was selected as an efficient electrolyte additive to stabilize the solid electrolyte interface (SEI) film on the lithium titanium oxide (LTO) electrodes in Li-ion batteries (LIBs). It was found that the use of BS as an additive could accelerate the growth of stable SEI film on the LTO surface, leading to the improved electrochemical stability of LTO electrodes. It can be supported by the BS additive to effectively reduce the thickness of SEI film, and it significantly enhances the electron migration in the SEI film. Consequently, the LIB-based LTO anode in the electrolyte containing 0.5 wt.% BS showed a superior electrochemical performance to that in the absence of BS. This work provides a new prospect for an efficient electrolyte additive for next-generation LIBs-based LTO anodes, especially when discharged to low voltage. Full article
(This article belongs to the Special Issue Polymer Composite Materials for Energy Storage)
Show Figures

Figure 1

13 pages, 6341 KiB  
Article
Synthesis and Characterizations of Na4MnCr(PO4)3/rGO as NASICON-Type Cathode Materials for Sodium-ion Batteries
by Bing-Hsuan Hsu and Wei-Ren Liu
Polymers 2022, 14(19), 4046; https://doi.org/10.3390/polym14194046 - 27 Sep 2022
Cited by 4 | Viewed by 1939
Abstract
NASICON-type Na4MnCr(PO4)3 (NMCP) wrapped with reduced graphene oxide (rGO) was synthesized via a simple sol-gel method as composite cathode material Na4MnCr(PO4)3/rGO (NMCP/rGO) for Na ion batteries. The surface morphology, crystal structure and [...] Read more.
NASICON-type Na4MnCr(PO4)3 (NMCP) wrapped with reduced graphene oxide (rGO) was synthesized via a simple sol-gel method as composite cathode material Na4MnCr(PO4)3/rGO (NMCP/rGO) for Na ion batteries. The surface morphology, crystal structure and pore size distribution of pristine NMCP and as-synthesized NMCP/rGO composite cathode are identified by X-ray diffraction (XRD), field emission-scanning electron microscopy (SEM), transmission electron microscope (TEM), the Brunauer–Emmett–Teller (BET) method and X-ray photoelectron spectroscopy (XPS). The electrochemical performance of composition-optimized NMCP/rGO composite cathode presents stable capacity retention and rate capability. The capacity retention of as-synthesized NMCP/rGO composite is 63.8%, and average coulombic efficiency maintains over 98.7% for 200 cycles. The reversible capacity of as-synthesized NMCP/rGO composite cathode still retained 45 mAh/g and 38 mAh/g under a current density of 0.5 A/g and 1.0 A/g, respectively, which was better than that of pristine NMCP, with only 6 mAh/g and 4 mAh/g. The redox reactions of pristine NMCP and as-synthesized NMCP/rGO composite are studied via cyclic voltammetry. The improved electronic conductivity and structure stability of bare NMCP is attributed to the contribution of the rGO coating. Full article
(This article belongs to the Special Issue Polymer Composite Materials for Energy Storage)
Show Figures

Graphical abstract

Back to TopTop