Functional Polymer Networks

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Chemistry".

Deadline for manuscript submissions: closed (31 December 2020) | Viewed by 23830

Special Issue Editor


E-Mail Website
Guest Editor
Marsico Lung Institute, University of North Carolina, Chapel Hill, NC 27599, USA
Interests: polymers; polymer networks; hydrogels; actuators; stimuli-responsive polymers; shape-memory polymers; fibers

Special Issue Information

Dear Colleagues,

Crosslinked polymer networks possess an array of desirable properties, including elasticity, mechanical strength, and convenient processability. As a result, materials based on polymer networks are the backbone of many modern industries, including automotive, cosmetics, food, and packaging. Research efforts have been aimed at expanding the potential of polymer networks by introducing novel functionalities such as responsiveness to stimuli, self-healing, biocompatibility, toughness, and controlled swelling. Polymer networks possessing these advanced functionalities are envisioned to provide engineering solutions and to drive the progress in many cutting-edge areas such as aerospace, medicine, prosthetics, and soft robotics. This Special Issue aims to present recent progress in the synthesis, modification, application, and theoretical understanding of polymer networks with added functionality.

Dr. Georgi Stoychev
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Polymer Networks,
  • Hydrogels,
  • Stimuli-Responsiveness,
  • Self-Healing,
  • Composites,
  • Tough Gels

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 3209 KiB  
Article
Thermo- and Photoresponsive Behaviors of Dual-Stimuli-Responsive Organogels Consisting of Homopolymers of Coumarin-Containing Methacrylate
by Seidai Okada and Eriko Sato
Polymers 2021, 13(3), 329; https://doi.org/10.3390/polym13030329 - 21 Jan 2021
Cited by 4 | Viewed by 1943
Abstract
Coumarin-containing vinyl homopolymers, such as poly(7-methacryloyloxycoumarin) (P1a) and poly(7-(2′-methacryloyloxyethoxy)coumarin) (P1b), show a lower critical solution temperature (LCST) in chloroform, which can be controlled by the [2 + 2] photochemical cycloaddition of the coumarin moiety, and they are recognized as monofunctional dual-stimuli-responsive polymers. A [...] Read more.
Coumarin-containing vinyl homopolymers, such as poly(7-methacryloyloxycoumarin) (P1a) and poly(7-(2′-methacryloyloxyethoxy)coumarin) (P1b), show a lower critical solution temperature (LCST) in chloroform, which can be controlled by the [2 + 2] photochemical cycloaddition of the coumarin moiety, and they are recognized as monofunctional dual-stimuli-responsive polymers. A single functional group of monofunctional dual-stimuli-responsive polymers responds to dual stimuli and can be introduced more uniformly and densely than those of dual-functional dual-stimuli-responsive polymers. In this study, considering a wide range of applications, organogels consisting of P1a and P1b, i.e., P1a-gel and P1b-gel, respectively, were synthesized, and their thermo- and photoresponsive behaviors in chloroform were investigated in detail. P1a-gel and P1b-gel in a swollen state (transparent) exhibited phase separation (turbid) through a temperature jump and reached a shrunken state (transparent), i.e., an equilibrium state, over time. Moreover, the equilibrium degree of swelling decreased non-linearly with increasing temperature. Furthermore, different thermoresponsive sites were photopatterned on the organogel through the photodimerization of the coumarin unit. The organogels consisting of homopolymers of coumarin-containing methacrylate exhibited unique thermo- and photoresponsivities and behaved as monofunctional dual-stimuli-responsive organogels. Full article
(This article belongs to the Special Issue Functional Polymer Networks)
Show Figures

Graphical abstract

25 pages, 6665 KiB  
Article
Multiscale Experimental Evaluation of Agarose-Based Semi-Interpenetrating Polymer Network Hydrogels as Materials with Tunable Rheological and Transport Performance
by Monika Trudicova, Jiri Smilek, Michal Kalina, Marcela Smilkova, Katerina Adamkova, Kamila Hrubanova, Vladislav Krzyzanek and Petr Sedlacek
Polymers 2020, 12(11), 2561; https://doi.org/10.3390/polym12112561 - 31 Oct 2020
Cited by 12 | Viewed by 3680
Abstract
This study introduces an original concept in the development of hydrogel materials for controlled release of charged organic compounds based on semi-interpenetrating polymer networks composed by an inert gel-forming polymer component and interpenetrating linear polyelectrolyte with specific binding affinity towards the carried active [...] Read more.
This study introduces an original concept in the development of hydrogel materials for controlled release of charged organic compounds based on semi-interpenetrating polymer networks composed by an inert gel-forming polymer component and interpenetrating linear polyelectrolyte with specific binding affinity towards the carried active compound. As it is experimentally illustrated on the prototype hydrogels prepared from agarose interpenetrated by poly(styrene sulfonate) (PSS) and alginate (ALG), respectively, the main benefit brought by this concept is represented by the ability to tune the mechanical and transport performance of the material independently via manipulating the relative content of the two structural components. A unique analytical methodology is proposed to provide complex insight into composition–structure–performance relationships in the hydrogel material combining methods of analysis on the macroscopic scale, but also in the specific microcosms of the gel network. Rheological analysis has confirmed that the complex modulus of the gels can be adjusted in a wide range by the gelling component (agarose) with negligible effect of the interpenetrating component (PSS or ALG). On the other hand, the content of PSS as low as 0.01 wt.% of the gel resulted in a more than 10-fold decrease of diffusivity of model-charged organic solute (Rhodamine 6G). Full article
(This article belongs to the Special Issue Functional Polymer Networks)
Show Figures

Graphical abstract

19 pages, 5475 KiB  
Article
3D Perfusable Hydrogel Recapitulating the Cancer Dynamic Environment to in Vitro Investigate Metastatic Colonization
by Chiara Vitale, Arianna Fedi, Alessandra Marrella, Gabriele Varani, Marco Fato and Silvia Scaglione
Polymers 2020, 12(11), 2467; https://doi.org/10.3390/polym12112467 - 24 Oct 2020
Cited by 12 | Viewed by 3980
Abstract
Metastasis is a dynamic process involving the dissemination of circulating tumor cells (CTCs) through blood flow to distant tissues within the body. Nevertheless, the development of an in vitro platform that dissects the crucial steps of metastatic cascade still remains a challenge. We [...] Read more.
Metastasis is a dynamic process involving the dissemination of circulating tumor cells (CTCs) through blood flow to distant tissues within the body. Nevertheless, the development of an in vitro platform that dissects the crucial steps of metastatic cascade still remains a challenge. We here developed an in vitro model of extravasation composed of (i) a single channel-based 3D cell laden hydrogel representative of the metastatic site, (ii) a circulation system recapitulating the bloodstream where CTCs can flow. Two polymers (i.e., fibrin and alginate) were tested and compared in terms of mechanical and biochemical proprieties. Computational fluid-dynamic (CFD) simulations were also performed to predict the fluid dynamics within the polymeric matrix and, consequently, the optimal culture conditions. Next, once the platform was validated through perfusion tests by fluidically connecting the hydrogels with the external circuit, highly metastatic breast cancer cells (MDA-MB-231) were injected and exposed to physiological wall shear stress (WSS) conditions (5 Dyn/cm2) to assess their migration toward the hydrogel. Results indicated that CTCs arrested and colonized the polymeric matrix, showing that this platform can be an effective fluidic system to model the first steps occurring during the metastatic cascade as well as a potential tool to in vitro elucidate the contribution of hemodynamics on cancer dissemination to a secondary site. Full article
(This article belongs to the Special Issue Functional Polymer Networks)
Show Figures

Figure 1

20 pages, 4105 KiB  
Article
Nanoconfined Crosslinked Poly(ionic liquid)s with Unprecedented Selective Swelling Properties Obtained by Alkylation in Nanophase-Separated Poly(1-vinylimidazole)-l-poly(tetrahydrofuran) Conetworks
by Tímea Stumphauser, György Kasza, Attila Domján, András Wacha, Zoltán Varga, Yi Thomann, Ralf Thomann, Balázs Pásztói, Tobias M. Trötschler, Benjamin Kerscher, Rolf Mülhaupt and Béla Iván
Polymers 2020, 12(10), 2292; https://doi.org/10.3390/polym12102292 - 07 Oct 2020
Cited by 19 | Viewed by 3664
Abstract
Despite the great interest in nanoconfined materials nowadays, nanocompartmentalized poly(ionic liquid)s (PILs) have been rarely investigated so far. Herein, we report on the successful alkylation of poly(1-vinylimidazole) with methyl iodide in bicontinuous nanophasic poly(1-vinylimidazole)-l-poly(tetrahydrofuran) (PVIm-l-PTHF) amphiphilic conetworks (APCNs) to [...] Read more.
Despite the great interest in nanoconfined materials nowadays, nanocompartmentalized poly(ionic liquid)s (PILs) have been rarely investigated so far. Herein, we report on the successful alkylation of poly(1-vinylimidazole) with methyl iodide in bicontinuous nanophasic poly(1-vinylimidazole)-l-poly(tetrahydrofuran) (PVIm-l-PTHF) amphiphilic conetworks (APCNs) to obtain nanoconfined methylated PVImMe-l-PTHF poly(ionic liquid) conetworks (PIL-CNs). A high extent of alkylation (~95%) was achieved via a simple alkylation process with MeI at room temperature. This does not destroy the bicontinuous nanophasic morphology as proved by SAXS and AFM, and PIL-CNs with 15–20 nm d-spacing and poly(3-methyl-1-vinylimidazolium iodide) PIL nanophases with average domain sizes of 8.2–8.4 nm are formed. Unexpectedly, while the swelling capacity of the PIL-CN dramatically increases in aprotic polar solvents, such as DMF, NMP, and DMSO, reaching higher than 1000% superabsorbent swelling degrees, the equilibrium swelling degrees decrease in even highly polar protic (hydrophilic) solvents, like water and methanol. An unprecedented Gaussian-type relationship was found between the ratios of the swelling degrees versus the polarity index, indicating increased swelling for the nanoconfined PVImMe-l-PTHF PIL-CNs in solvents with a polarity index between ~6 and 9.5. In addition to the nanoconfined structural features, the unique selective superabsorbent swelling behavior of the PIL-CNs can also be utilized in various application fields. Full article
(This article belongs to the Special Issue Functional Polymer Networks)
Show Figures

Graphical abstract

17 pages, 5290 KiB  
Article
Synthesis of Network Polymers by Means of Addition Reactions of Multifunctional-Amine and Poly(ethylene glycol) Diglycidyl Ether or Diacrylate Compounds
by Naofumi Naga, Mitsusuke Sato, Kensuke Mori, Hassan Nageh and Tamaki Nakano
Polymers 2020, 12(9), 2047; https://doi.org/10.3390/polym12092047 - 08 Sep 2020
Cited by 19 | Viewed by 5359
Abstract
Addition reactions of multi-functional amine, polyethylene imine (PEI) or diethylenetriamine (DETA), and poly(ethylene glycol) diglycidyl ether (PEGDE) or poly(ethylene glycol) diacrylate (PEGDA), have been investigated to obtain network polymers in H2O, dimethyl sulfoxide (DMSO), and ethanol (EtOH). Ring opening addition reaction [...] Read more.
Addition reactions of multi-functional amine, polyethylene imine (PEI) or diethylenetriamine (DETA), and poly(ethylene glycol) diglycidyl ether (PEGDE) or poly(ethylene glycol) diacrylate (PEGDA), have been investigated to obtain network polymers in H2O, dimethyl sulfoxide (DMSO), and ethanol (EtOH). Ring opening addition reaction of the multi-functional amine and PEGDE in H2O at room temperature or in DMSO at 90 °C using triphenylphosphine as a catalyst yielded gels. Aza-Michael addition reaction of the multi-functional amine and PEGDA in DMSO or EtOH at room temperature also yielded corresponding gels. Compression test of the gels obtained with PEI showed higher Young’s modulus than those with DETA. The reactions of the multi-functional amine and low molecular weight PEGDA in EtOH under the specific conditions yielded porous polymers induced by phase separation during the network formation. The morphology of the porous polymers could be controlled by the reaction conditions, especially monomer concentration and feed ratio of the multi-functional amine to PEGDA of the reaction system. The porous structure was formed by connected spheres or a co-continuous monolithic structure. The porous polymers were unbreakable by compression, and their Young’s modulus increased with the increase in the monomer concentration of the reaction systems. The porous polymers absorbed various solvents derived from high affinity between the polyethylene glycol units in the network structure and the solvents. Full article
(This article belongs to the Special Issue Functional Polymer Networks)
Show Figures

Figure 1

17 pages, 3273 KiB  
Article
Tuning the Swelling Properties of Smart Multiresponsive Core-Shell Microgels by Copolymerization
by Timo Brändel, Maxim Dirksen and Thomas Hellweg
Polymers 2019, 11(8), 1269; https://doi.org/10.3390/polym11081269 - 31 Jul 2019
Cited by 12 | Viewed by 4689
Abstract
The present study focuses on the development of multiresponsive core-shell microgels and the manipulation of their swelling properties by copolymerization of different acrylamides—especially N-isopropylacrylamide (NIPAM), N-isopropylmethacrylamide (NIPMAM), and NNPAM—and acrylic acid. We use atomic force microscopy for the dry-state characterization of [...] Read more.
The present study focuses on the development of multiresponsive core-shell microgels and the manipulation of their swelling properties by copolymerization of different acrylamides—especially N-isopropylacrylamide (NIPAM), N-isopropylmethacrylamide (NIPMAM), and NNPAM—and acrylic acid. We use atomic force microscopy for the dry-state characterization of the microgel particles and photon correlation spectroscopy to investigate the swelling behavior at neutral (pH 7) and acidic (pH 4) conditions. A transition between an interpenetrating network structure for microgels with a pure poly-N,-n-propylacrylamide (PNNPAM) shell and a distinct core-shell morphology for microgels with a pure poly-N-isopropylmethacrylamide (PNIPMAM) shell is observable. The PNIPMAM molfraction of the shell also has an important influence on the particle rigidity because of the decreasing degree of interpenetration. Furthermore, the swelling behavior of the microgels is tunable by adjustment of the pH-value between a single-step volume phase transition and a linear swelling region at temperatures corresponding to the copolymer ratios of the shell. This flexibility makes the multiresponsive copolymer microgels interesting candidates for many applications, e.g., as membrane material with tunable permeability. Full article
(This article belongs to the Special Issue Functional Polymer Networks)
Show Figures

Figure 1

Back to TopTop