Polymer Materials and Design Processes for Additively Manufactured Products

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Processing and Engineering".

Deadline for manuscript submissions: 15 October 2024 | Viewed by 3690

Special Issue Editors


E-Mail Website
Guest Editor
School of Engineering, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia
Interests: hybrid materials; lightweight load-bearing structures, design for additive manufacturing; optimisation; simulation

E-Mail Website
Guest Editor
Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
Interests: interaction of high power laser radiation with matter leading to changes in state from heating to melting and applications in additive manufacture; joining and surfacing

Special Issue Information

Dear Colleagues,

One of the great promises of additive manufacturing was innovations in product design by exploiting its geometry agnosticism and the reduction of constraints previously imposed by manufacturing capabilities. Once employed purely for prototyping, additive manufacturing is now increasingly used in the production of end-use products, either for spare parts, small series production, or tooling. However, there are still challenges to the wider industrialisation of additive manufacturing, such as a lack of a broader selection of printable materials, limited material performance but also a lack of design knowledge, in particular, the familiarity with the technology and the design principles that are best suited to AM’s unique capabilities. Manufacturing scaling also appears to be one of the major challenges. While progress has been made to address this challenge, there are still unknowns and a lack of understanding about the process and material interactions during them that would lead to better part repeatability and process accuracy.

Since manufacturing innovation starts with design innovation, this Special Issue focuses on advances, both in polymer material/process design and product design, that impact and improve additively manufactured end-use products and the industrialisation of additive manufacturing.

Dr. Mladenko Kajtaz
Prof. Dr. Milan Brandt
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • additive manufacturing polymers
  • materials
  • design
  • end-use products
  • industrialisation
  • polymer composites

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3552 KiB  
Article
Thermally Conductive and Electrically Insulating Polymer-Based Composites Heat Sinks Fabricated by Fusion Deposition Modeling
by Simone Bagatella, Annacarla Cereti, Francesco Manarini, Marco Cavallaro, Raffaella Suriano and Marinella Levi
Polymers 2024, 16(3), 432; https://doi.org/10.3390/polym16030432 - 04 Feb 2024
Viewed by 772
Abstract
This study explores the potential of novel boron nitride (BN) microplatelet composites with combined thermal conduction and electrical insulation properties. These composites are manufactured through Fusion Deposition Modeling (FDM), and their application for thermal management in electronic devices is demonstrated. The primary focus [...] Read more.
This study explores the potential of novel boron nitride (BN) microplatelet composites with combined thermal conduction and electrical insulation properties. These composites are manufactured through Fusion Deposition Modeling (FDM), and their application for thermal management in electronic devices is demonstrated. The primary focus of this work is, therefore, the investigation of the thermoplastic composite properties to show the 3D printing of lightweight polymeric heat sinks with remarkable thermal performance. By comparing various microfillers, including BN and MgO particles, their effects on material properties and alignment within the polymer matrix during filament fabrication and FDM processing are analyzed. The characterization includes the evaluation of morphology, thermal conductivity, and mechanical and electrical properties. Particularly, a composite with 32 wt% of BN microplatelets shows an in-plane thermal conductivity of 1.97 W m−1 K−1, offering electrical insulation and excellent printability. To assess practical applications, lightweight pin fin heat sinks using these composites are designed and 3D printed. Their thermal performance is evaluated via thermography under different heating conditions. The findings are very promising for an efficient and cost-effective fabrication of thermal devices, which can be obtained through extrusion-based Additive Manufacturing (AM), such as FDM, and exploited as enhanced thermal management solutions in electronic devices. Full article
Show Figures

Graphical abstract

19 pages, 6139 KiB  
Article
Advanced FFF of PEEK: Infill Strategies and Material Characteristics for Rapid Tooling
by Karim Abbas, Lukas Hedwig, Nicolae Balc and Sebastian Bremen
Polymers 2023, 15(21), 4293; https://doi.org/10.3390/polym15214293 - 01 Nov 2023
Viewed by 995
Abstract
Traditional vulcanization mold manufacturing is complex, costly, and under pressure due to shorter product lifecycles and diverse variations. Additive manufacturing using Fused Filament Fabrication and high-performance polymers like PEEK offer a promising future in this industry. This study assesses the compressive strength of [...] Read more.
Traditional vulcanization mold manufacturing is complex, costly, and under pressure due to shorter product lifecycles and diverse variations. Additive manufacturing using Fused Filament Fabrication and high-performance polymers like PEEK offer a promising future in this industry. This study assesses the compressive strength of various infill structures (honeycomb, grid, triangle, cubic, and gyroid) when considering two distinct build directions (Z, XY) to enhance PEEK’s economic and resource efficiency in rapid tooling. A comparison with PETG samples shows the behavior of the infill strategies. Additionally, a proof of concept illustrates the application of a PEEK mold in vulcanization. A peak compressive strength of 135.6 MPa was attained in specimens that were 100% solid and subjected to thermal post-treatment. This corresponds to a 20% strength improvement in the Z direction. In terms of time and mechanical properties, the anisotropic grid and isotropic cubic infill have emerged for use in rapid tooling. Furthermore, the study highlights that reducing the layer thickness from 0.15 mm to 0.1 mm can result in a 15% strength increase. The study unveils the successful utilization of a room-temperature FFF-printed PEEK mold in vulcanization injection molding. The parameters and infill strategies identified in this research enable the resource-efficient FFF printing of PEEK without compromising its strength properties. Using PEEK in rapid tooling allows a cost reduction of up to 70% in tool production. Full article
Show Figures

Figure 1

18 pages, 4545 KiB  
Article
Thermal and Oxidative Aging Effects of Polyamide-11 Powder Used in Multi-Jet Fusion
by Chrysoula Pandelidi, Ryan Blakis, Kok Peng Marcian Lee, Stuart Bateman, Milan Brandt and Mladenko Kajtaz
Polymers 2023, 15(10), 2395; https://doi.org/10.3390/polym15102395 - 21 May 2023
Viewed by 1294
Abstract
The transition of additive manufacturing (AM) from a technique for rapid prototyping to one for manufacturing of near net or net components has been led by the development of methods that can repeatedly fabricate quality parts. High-speed laser sintering and the recently developed [...] Read more.
The transition of additive manufacturing (AM) from a technique for rapid prototyping to one for manufacturing of near net or net components has been led by the development of methods that can repeatedly fabricate quality parts. High-speed laser sintering and the recently developed multi-jet fusion (MJF) processes have seen quick adoption from industry due to their ability to produce high-quality components relatively quickly. However, the recommended refresh ratios of new powder led to notable amounts of used powder being discarded. In this research, polyamide-11 powder, typically used in AM, was thermally aged to investigate its properties at extreme levels of reuse. The powder was exposed to 180 °C in air for up to 168 h and its chemical, morphological, thermal, rheological, and mechanical properties were examined. To decouple the thermo-oxidative aging phenomena from AM process related effects, such as porosity, rheological and mechanical properties characterisation was performed on compression-moulded specimens. It was found that exposure notably affected the properties of both the powder and the derived compression-moulded specimens within the first 24 h of exposure; however, consecutive exposure did not have a significant effect. Full article
Show Figures

Figure 1

Back to TopTop