Light and Plant Response: Adaptation to Extremes, Phenotypic Plasticity and Plant Competition

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Physiology and Metabolism".

Deadline for manuscript submissions: closed (20 March 2023) | Viewed by 17023

Special Issue Editors


E-Mail Website
Guest Editor
Department of Agroecology and Plant Production, University of Agriculture in Kraków, 31-120 Kraków, Poland
Interests: sustainable crop production; legume crops; oilseed crops; biodiversity; crop modeling; biostimulation
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Co-Guest Editor
Faculty of Agriculture and Economics, Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Podłużna 3, 30-239 Kraków, Poland
Interests: sustainable agriculture; environmental monitoring; analytical method validation; precision agriculture; soil contamination and soil quality

Special Issue Information

Dear Colleagues,

Light is one of the most important environmental factors that influence physiological processes, such as photosynthesis, photomorphogenesis, photoperiodism, phototropism and secondary metabolism (Gelderen et al., 2018). Plants have acquired a sophisticated network of photoreceptors that enable them to perceive and respond to environmental change. This is of particular importance under dense planting conditions, such as in most agricultural fields, where aboveground competition for light occurs. Competition for light among plants often induces asymetric competition, which can be successfully corrected by phenotypic plasticity ability. The plant response to light quantity and quality displays a high degree of genetic differentiation. The effect of light intensity on plants has been studied experimentally for over 100 years now. However, there are still substantial gaps in the knowledge concerning the effects of daily light integral to plant reproduction, respiration, chemical composition, belowground organ adaptations, and plant interrelations. Plants constantly coordinate growth in response to light intensity in order to find competition on the canopy level and obtain sufficient or even higher productivity.

This Special Issue of Plants will highlight the influence of light heterogenity on the structure and dynamics of plant populations and species coexistence explored by mechanistic or prediction approaches. We welcome original research papers from leaf phenology to the ecosystem scale, based on experimental, theoretical, and modeling approaches, as well as review articles.

With the aim of strengthening the scientific basis for plant response to light, we welcome papers that enhance our understanding of the following keywords. 

Dr. Agnieszka Klimek-Kopyra
Dr. Tomasz Czech
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • phenotypic plasticity
  • positive or negative plant interactions
  • species coexistence and biodiversity
  • light interception
  • environmental cost of light limitation
  • plant modeling
  • physiological and molecular approach of light heterogeneity
  • LEDs

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2679 KiB  
Article
Effect of Low Light on Photosynthetic Performance of Tomato Plants—Ailsa Craig and Carotenoid Mutant Tangerine
by Maya Velitchkova, Martin Stefanov and Antoaneta V. Popova
Plants 2023, 12(16), 3000; https://doi.org/10.3390/plants12163000 - 20 Aug 2023
Cited by 1 | Viewed by 1168
Abstract
The effects of a five-day treatment with low light intensity on tomato plants—Ailsa Craig and tangerine mutant—at normal and low temperatures and after recovery for three days under control conditions were investigated. The tangerine tomato, which has orange fruits, yellowish young leaves, and [...] Read more.
The effects of a five-day treatment with low light intensity on tomato plants—Ailsa Craig and tangerine mutant—at normal and low temperatures and after recovery for three days under control conditions were investigated. The tangerine tomato, which has orange fruits, yellowish young leaves, and pale blossoms, accumulates prolycopene rather than all-trans lycopene. We investigated the impact of low light at normal and low temperatures on the functioning and effectiveness of photosynthetic apparatuses of both plants. The photochemical activities of Photosystem I (PSI) and Photosystem II (PSII) were assessed, and the alterations in PSII antenna size were characterized by evaluating the abundance of PSII-associated proteins Lhcb1, Lhcb2, CP43, and CP47. Alterations in energy distribution and interaction of both photosystems were analyzed using 77K fluorescence. In Aisla Craig plants, an increase in thylakoid membrane fluidity was detected during treatment with low light at a low temperature, while for the tangerine mutant, no significant change was observed. The PSII activity of thylakoids from mutant tangerine was more strongly inhibited by treatment with low light at a low temperature while low light barely affected PSII in Aisla Craig. The obtained data indicated that the observed differences in the responses of photosynthetic apparatuses of Ailsa Craig and tangerine when exposed to low light intensity and suboptimal temperature were mainly related to the differences in sensitivity and antenna complexes of PSII. Full article
Show Figures

Figure 1

16 pages, 1860 KiB  
Article
Plant-Growth Promoting Microbes Change the Photosynthetic Response to Light Quality in Spinach
by Luca Vitale, Ermenegilda Vitale, Silvana Francesca, Christian Lorenz and Carmen Arena
Plants 2023, 12(5), 1149; https://doi.org/10.3390/plants12051149 - 03 Mar 2023
Cited by 3 | Viewed by 1770
Abstract
In this study, the combined effect of plant growth under different light quality and the application of plant-growth-promoting microbes (PGPM) was considered on spinach (Spinacia oleracea L.) to assess the influence of these factors on the photosynthetic performance. To pursue this goal, [...] Read more.
In this study, the combined effect of plant growth under different light quality and the application of plant-growth-promoting microbes (PGPM) was considered on spinach (Spinacia oleracea L.) to assess the influence of these factors on the photosynthetic performance. To pursue this goal, spinach plants were grown in a growth chamber at two different light quality regimes, full-spectrum white light (W) and red-blue light (RB), with (I) or without (NI) PGPM-based inoculants. Photosynthesis-light response curves (LRC) and photosynthesis-CO2 response curves (CRC) were performed for the four growth conditions (W-NI, RB-NI, W-I, and RB-I). At each step of LRC and CRC, net photosynthesis (PN), stomatal conductance (gs), Ci/Ca ratio, water use efficiency (WUEi), and fluorescence indexes were calculated. Moreover, parameters derived from the fitting of LRC, such as light-saturated net photosynthesis (PNmax), apparent light efficiency (Qpp), and dark respiration (Rd), as well as the Rubisco large subunit amount, were also determined. In not-inoculated plants, the growth under RB- regime improved PN compared to W-light because it increased stomatal conductance and favored the Rubisco synthesis. Furthermore, the RB regime also stimulates the processes of light conversion into chemical energy through chloroplasts, as indicated by the higher values of Qpp and PNmax in RB compared to W plants. On the contrary, in inoculated plants, the PN enhancement was significantly higher in W (30%) than in RB plants (17%), which showed the highest Rubisco content among all treatments. Our results indicate that the plant-growth-promoting microbes alter the photosynthetic response to light quality. This issue must be considered when PGPMs are used to improve plant growth performance in a controlled environment using artificial lighting. Full article
Show Figures

Figure 1

10 pages, 1032 KiB  
Communication
Colored LED Lights: Use One Color Alone or with Others for Growth in Hedyotis corymbosa In Vitro?
by Anh Tuan Le, In-Lee Choi, Gyung-Deok Han, Ho-Min Kang, Dae Ho Jung, Won-Pyo Park, Mehtap Yildiz, Thuong Kiet Do and Yong Suk Chung
Plants 2023, 12(1), 93; https://doi.org/10.3390/plants12010093 - 24 Dec 2022
Viewed by 1618
Abstract
In recent years, light-emitting diode (LED) technology has been applied to improve crop production and induce targeted biochemical or physiological responses in plants. This study investigated the effect of different ratios of blue 450 nm and red 660 nm LEDs on the overall [...] Read more.
In recent years, light-emitting diode (LED) technology has been applied to improve crop production and induce targeted biochemical or physiological responses in plants. This study investigated the effect of different ratios of blue 450 nm and red 660 nm LEDs on the overall plant growth, photosynthetic characteristics, and total triterpenoid production in the leaves of Hedyotis corymbosa in vitro plants. The results showed that a high proportion of blue LED lights had a positive effect on enhancing photosynthesis and the overall biomass. In addition, blue LED lights were shown to be more effective in controlling the production of the total triterpenoid content compared with the red LED lights. Moreover, it was also found that plants grown under a high proportion of red LEDs exhibited reduced photosynthetic properties and even induced damage to the photosynthetic apparatus, which indicated that the blue or red LED lights played contrary roles in Hedyotis corymbosa. Full article
Show Figures

Figure 1

11 pages, 29389 KiB  
Article
Complementary Photostimulation of Seeds and Plants as an Effective Tool for Increasing Crop Productivity and Quality in Light of New Challenges Facing Agriculture in the 21st Century—A Case Study
by Agnieszka Klimek-Kopyra and Tomasz Czech
Plants 2022, 11(13), 1649; https://doi.org/10.3390/plants11131649 - 22 Jun 2022
Cited by 3 | Viewed by 1336
Abstract
Climate change has prompted the search for new methods for improving agricultural practices for legume crops. The aim of the study was to test an innovative method of complementary photostimulation of seeds and plants aimed to improve the quantitative and qualitative features of [...] Read more.
Climate change has prompted the search for new methods for improving agricultural practices for legume crops. The aim of the study was to test an innovative method of complementary photostimulation of seeds and plants aimed to improve the quantitative and qualitative features of soybean (Glycine hispida L. (Merr.)) yield. Complementary photostimulation of plants was shown to positively affect the yield and chemical composition of soybeans, significantly increasing the content of protein and fat in seeds of the Merlin cultivar. Significant positive effects compared to the control were obtained following irradiation of seeds and plants for 3 s (the shorter of the analyzed exposure times). The results clearly indicate the need to improve the proposed new HUGO (High Utility for Optimal Growth) technology to optimize soybean yield. Full article
Show Figures

Figure 1

14 pages, 2600 KiB  
Article
Light Interception, Photosynthetic Performance, and Yield of Oil Palm Interspecific OxG Hybrid (Elaeis oleifera (Kunth) Cortés x Elaeis guineensis Jacq.) under Three Planting Densities
by Hernán Mauricio Romero, Stephany Guataquira and Diana Carolina Forero
Plants 2022, 11(9), 1166; https://doi.org/10.3390/plants11091166 - 26 Apr 2022
Cited by 9 | Viewed by 2690
Abstract
Environmental conditions are crucial for crops’ growth, development, and productivity. One of the most important physiological factors associated with the production of crops is the use of solar radiation for the photosynthesis process, which determines the amount of assimilates available for crop growth [...] Read more.
Environmental conditions are crucial for crops’ growth, development, and productivity. One of the most important physiological factors associated with the production of crops is the use of solar radiation for the photosynthesis process, which determines the amount of assimilates available for crop growth and yield. Three age classes (4, 6, and 14 years) and three planting densities (143, 128, and 115 palms ha−1) were evaluated in a commercial interspecific Elaeis Oleifera x Elaeis guineensis hybrid Coari x La Mé. The light interception patterns and the photosynthetic performance were determined. Measurements were taken of the leaf area, the number of leaves, and incident and photosynthetically transmitted active radiation. Also, photosynthetic rates, light, and yield were measured. The canopy extinction coefficient (Kc) was estimated using the Monsi and Saeki model. Under the evaluated conditions, the average Kc value for 4-year-old palms was 0.44; for the 6-year-old group of palms, the average value was 0.40, and 0.32 for the 14-year-old palms, with coefficients of determination (R2) greater than 0.8. A pattern associated with the age of the crop was observed, where the Kc decreased in groups of adult palms. The results showed increased Kc as the planting density decreased. No statistically significant differences were observed between planting densities or ages in the light and CO2 curves regarding photosynthesis. The leaf level in which the measurement was made influenced photosynthesis. Thus, the highest values of the photosynthesis parameters were observed in leaf 17. The crop yield tended to stabilize 8 years after planting under 143 and 128 palms per hectare, but 14 years after planting, the Fresh fruit bunch (FFB) production was still growing under 115 palms per hectare. The results showed that, up to year 14 after planting, the highest cumulative yield was achieved with 115 palms per hectare. This was partly caused by a sharp decline in production observed under 128 palms per hectare, which could indicate that in the long production cycle of the OxG hybrids, the 115-palms-per-hectare planting density would result in higher cumulative FFB production. Furthermore, the results showed that the optimum planting density for the hybrids of the present study would be 120 palms ha−1, corresponding to a planting distance of 9.8 m between plants. Full article
Show Figures

Figure 1

9 pages, 492 KiB  
Communication
Potential Use of Colored LED Lights to Increase the Production of Bioactive Metabolites Hedyotis corymbosa (L.) Lam
by Anh Tuan Le, Ju-Kyung Yu, Gyung-Deok Han, Thuong Kiet Do and Yong-Suk Chung
Plants 2022, 11(2), 225; https://doi.org/10.3390/plants11020225 - 15 Jan 2022
Cited by 4 | Viewed by 2203
Abstract
Hedyotis corymbosa (L.) Lam is a wild herb that is used in traditional Indian, Chinese, and African medicine. Light-emitting diode (LED) technology is paving the way to enhance crop production and inducing targeted photomorphogenic, biochemical, or physiological responses in plants. This study examines [...] Read more.
Hedyotis corymbosa (L.) Lam is a wild herb that is used in traditional Indian, Chinese, and African medicine. Light-emitting diode (LED) technology is paving the way to enhance crop production and inducing targeted photomorphogenic, biochemical, or physiological responses in plants. This study examines the efficiency of H. corymbosa (L.) Lam production under blue 450 nm and red 660 nm LED lights for overall plant growth, photosynthetic characteristics, and the contents of metabolite compounds. Our research showed that blue LED lights provided a positive effect on enhancing plant growth and overall biomass. In addition, blue LED lights are more effective in controlling the production of sucrose, starch, total phenolic compounds, and total flavonoid compared to red LED lights. However, blue and red LED lights played essential but different roles in photosynthetic characteristics. Our results showed the potential of colored LED light applications in improving farming methods and increasing metabolite production in herbs. Full article
Show Figures

Figure 1

12 pages, 1900 KiB  
Article
Comparative Study of Temporal Changes in Pigments and Optical Properties in Sepals of Helleborus odorus and H. niger from Prebloom to Seed Production
by Mateja Grašič, Maja Dacar and Alenka Gaberščik
Plants 2022, 11(1), 119; https://doi.org/10.3390/plants11010119 - 31 Dec 2021
Cited by 3 | Viewed by 1579
Abstract
Helleborus niger is an evergreen species, while H. odorus is an herbaceous understorey species. They both develop flowers before the forest canopy layer closes. Their sepals remain after flowering and have multiple biological functions. To further elucidate the functions of sepals during flower [...] Read more.
Helleborus niger is an evergreen species, while H. odorus is an herbaceous understorey species. They both develop flowers before the forest canopy layer closes. Their sepals remain after flowering and have multiple biological functions. To further elucidate the functions of sepals during flower development, we examined their optical and chemical properties, and the photochemical efficiency of photosystem II in the developing, flowering, and fruiting flowers. Sepals of the two species differed significantly in the contents of photosynthetic pigments and anthocyanins, but less in the UV-absorbing substances’ contents. Significant differences in photosynthetic pigment contents were also revealed within different developmental phases. The sepal potential photochemical efficiency of photosystem II was high in all developmental phases in H. odorus, whereas in H. niger, it was initially low and later increased. In the green H. odorus sepals, we obtained typical green leaf spectra with peaks in the green and NIR regions, and a low reflectance and transmittance in the UV region. On the other hand, in the white H. niger sepals in the developing and flowering phases, the response was relatively constant along the visible and NIR regions. Pigment profiles, especially chlorophylls, were shown to be important in shaping sepal optical properties, which confirms their role in light harvesting. All significant parameters together accounted for 44% and 34% of the reflectance and transmittance spectra variability, respectively. These results may contribute to the selection of Helleborus species and to a greater understanding of the ecological diversity of understorey plants in the forests. Full article
Show Figures

Figure 1

16 pages, 1146 KiB  
Article
LED and HPS Supplementary Light Differentially Affect Gas Exchange in Tomato Leaves
by Onofrio Davide Palmitessa, Aina E. Prinzenberg, Elias Kaiser and Ep Heuvelink
Plants 2021, 10(4), 810; https://doi.org/10.3390/plants10040810 - 20 Apr 2021
Cited by 8 | Viewed by 3279
Abstract
Using light emitting diodes (LED) instead of conventionally used high pressure sodium (HPS) lamps as a supplemental light source in greenhouses results in a higher efficacy (µmol light per J electricity) and makes it possible to customize the light spectrum. To explore the [...] Read more.
Using light emitting diodes (LED) instead of conventionally used high pressure sodium (HPS) lamps as a supplemental light source in greenhouses results in a higher efficacy (µmol light per J electricity) and makes it possible to customize the light spectrum. To explore the effects of LED and HPS on gas exchange, thermal relations, photosynthesis, and water status of young tomato plants, seven genotypes were grown in a greenhouse under LED (95% red, 5% blue) or HPS lamps in four experiments differing in the fraction of lamp light over natural light. HPS lights emit a broader spectrum of red (40%), green–yellow (50%), blue (5%), and far-red (5%) and a substantial amount of infrared radiation (heat). Young tomato plants grown under LED showed lower leaf temperature and higher stomatal density, stomatal conductance (gs) and transpiration rate (E) than plants grown under HPS; this may be due to the different supplemental light spectrum. The young plants grown under LED tended to have increased photosynthetic capacity. Furthermore, the water stress indices CWSI and IG, which were obtained using thermal imaging, were positively correlated with gas exchange-derived gs and E, putting forward the use of thermal imaging for the phenotyping of transpiration. Under LED light, photosynthetic gas exchange was generally increased, which agreed with the water stress indices. The extent of this increase was genotype-dependent. All differences between LED and HPS were smaller in the experiments where the fraction of lamp light over natural light was smaller. Full article
Show Figures

Figure 1

Back to TopTop