Plant Stress Physiology and Molecular Biology

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Response to Abiotic Stress and Climate Change".

Deadline for manuscript submissions: closed (20 September 2023) | Viewed by 18138

Special Issue Editor

School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
Interests: transgenic plants; stress physiology; stress protein; functional gene research
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plants grow and reproduce in complex environments, and plants are subject to a variety of chemical and physical abiotic stresses, including low temperature, high temperature, drought, salinity, flooding, excess light, ultraviolet radiation, mineral nutrient deficiency, oxygen deficiency, injuries, and air, soil or water pollution with substances such as heavy metals, pesticides, ozone and sulfur dioxide. These abiotic stresses can negatively affect plant physiology and biochemistry, and further affect the growth and development of plants. In order to cope with abiotic stress, plants tolerate, resist, or avoid the harm of stress through various mechanisms. Over the past few decades, a variety of novel methods/technologies have been used to study the damage to plants caused by stress, as well as the plants’ responses and defense mechanisms. This Special Issue of Plants, primarily focused on phytoremediation and plant stress physiology, will cover a wide variety of areas, such as the effects of various abiotic stresses on plants, plant stress resistance genes, the regulatory network of stress resistance, and the role of hormones in plant stress resistance. The aim of this Special Issue is to provide an up-to-date understanding of plant responses to abiotic stress.

Dr. Peng Zhou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • abiotic stress
  • functional genes
  • regulation networks
  • plant responses and defense mechanisms against stress
  • phytohormones

Related Special Issue

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 6482 KiB  
Article
A Genome-Wide Identification and Expression Analysis of the Casparian Strip Membrane Domain Protein-like Gene Family in Pogostemon cablin in Response to p-HBA-Induced Continuous Cropping Obstacles
by Yating Su, Muhammad Zeeshan Ul Haq, Xiaofeng Liu, Yang Li, Jing Yu, Dongmei Yang, Yougen Wu and Ya Liu
Plants 2023, 12(22), 3901; https://doi.org/10.3390/plants12223901 - 19 Nov 2023
Viewed by 887
Abstract
Casparian strip membrane domain protein-like (CASPL) genes are key genes for the formation and regulation of the Casparian strip and play an important role in plant abiotic stress. However, little research has focused on the members, characteristics, and biological functions of [...] Read more.
Casparian strip membrane domain protein-like (CASPL) genes are key genes for the formation and regulation of the Casparian strip and play an important role in plant abiotic stress. However, little research has focused on the members, characteristics, and biological functions of the patchouli PatCASPL gene family. In this study, 156 PatCASPL genes were identified at the whole-genome level. Subcellular localization predicted that 75.6% of PatCASPL proteins reside on the cell membrane. A phylogenetic analysis categorized PatCASPL genes into five subclusters alongside Arabidopsis CASPL genes. In a cis-acting element analysis, a total of 16 different cis-elements were identified, among which the photo-responsive element was the most common in the CASPL gene family. A transcriptome analysis showed that p-hydroxybenzoic acid, an allelopathic autotoxic substance, affected the expression pattern of PatCASPLs, including a total of 27 upregulated genes and 30 down-regulated genes, suggesting that these PatCASPLs may play an important role in the regulation of patchouli continuous cropping obstacles by affecting the formation and integrity of Casparian strip bands. These results provided a theoretical basis for exploring and verifying the function of the patchouli PatCASPL gene family and its role in continuous cropping obstacles. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology)
Show Figures

Figure 1

12 pages, 1944 KiB  
Article
Overexpression of IlHMA2, from Iris lactea, Improves the Accumulation of and Tolerance to Cadmium in Tobacco
by Cui Li, Qinghai Wang, Xincun Hou, Chunqiao Zhao and Qiang Guo
Plants 2023, 12(19), 3460; https://doi.org/10.3390/plants12193460 - 30 Sep 2023
Viewed by 722
Abstract
Long-distance transport cadmium (Cd) from roots to shoots is a key factor for Cd phytoremediation. Our previous study indicated that heavy metal P1B2-ATPases, IlHMA2, was involved in improving the accumulation of Cd via mediated long-distance transport Cd, contributing to the phytoremediation [...] Read more.
Long-distance transport cadmium (Cd) from roots to shoots is a key factor for Cd phytoremediation. Our previous study indicated that heavy metal P1B2-ATPases, IlHMA2, was involved in improving the accumulation of Cd via mediated long-distance transport Cd, contributing to the phytoremediation in Cd accumulator Iris lactea. However, whether the overexpression of IlHMA2 could enhance the accumulation and tolerance to Cd remains unclear in plants. Here, we generated transgenic tobacco overexpressing IlHMA2 and tested its effect on the translocation and accumulation of Cd and zinc (Zn), as well as the physio-biochemical characteristics under 50 mg/L Cd exposure. The overexpression of IlHMA2 significantly increased Cd concentrations in xylem saps, resulting in enhanced root-to-shoot Cd translocation compared with wild-type. Meanwhile, overexpressing IlHMA2 promoted Zn accumulations, accompanied by elevating proline contents and antioxidant enzyme activity (SOD, POD, and CAT) to diminish the overproduction of ROS in transgenic tobacco. These pieces of evidence suggested that higher Zn concentrations and lower ROS levels could tremendously alleviate Cd toxicity for transgenic tobacco, thereby improving the growth and tolerance. Overall, the overexpression of IlHMA2 could facilitate Cd accumulation and enhance its tolerance in tobacco exposed to Cd contaminations. This would provide a valuable reference for improving Cd phytoremediation efficiency. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology)
Show Figures

Figure 1

21 pages, 5253 KiB  
Article
Genome-Wide Identification and Expression Analysis of the TCP Gene Family Related to Developmental and Abiotic Stress in Ginger
by Yajun Jiang, Dongzhu Jiang, Maoqin Xia, Min Gong, Hui Li, Haitao Xing, Xuedong Zhu and Hong-Lei Li
Plants 2023, 12(19), 3389; https://doi.org/10.3390/plants12193389 - 26 Sep 2023
Cited by 1 | Viewed by 1214
Abstract
Ginger (Zingiber officinale Roscoe), a widely consumed edible and medicinal plant, possesses significant nutritional and economic value. Abiotic stresses such as drought and low temperatures can impact the growth and development of ginger. The plant-specific transcription factor Teosinte branched1/cycloidea/proliferating cell factor [...] Read more.
Ginger (Zingiber officinale Roscoe), a widely consumed edible and medicinal plant, possesses significant nutritional and economic value. Abiotic stresses such as drought and low temperatures can impact the growth and development of ginger. The plant-specific transcription factor Teosinte branched1/cycloidea/proliferating cell factor (TCP) has progressively been identified in various plants for its role in regulating plant growth and development as well as conferring resistance to abiotic stresses. However, limited information on the TCP family is available in ginger. In this study, we identified 20 TCP members in the ginger genome, which were randomly distributed across 9 chromosomes. Based on phylogenetic analysis, these ginger TCP were classified into two subfamilies: Class I (PCF) and Class II (CIN, CYC/TB). The classification of the identified ginger TCPs was supported by a multi-species phylogenetic tree and motif structure analysis, suggesting that the amplification of the ginger TCP gene family occurred prior to the differentiation of angiosperms. The promoter region of ginger TCP genes was found to contain numerous cis-acting elements associated with plant growth, development, and abiotic stress response. Among these elements, the stress response element, anaerobic induction, and MYB binding site play a dominant role in drought responsiveness. Additionally, expression pattern analysis revealed variations in the expression of ginger TCP gene among different tissues and in response to diverse abiotic stresses (drought, low temperature, heat, and salt). Our research offers a thorough examination of TCP members within the ginger plant. This analysis greatly contributes to the understanding of how TCP genes regulate tissue development and response to stress, opening up new avenues for further exploration in this field. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology)
Show Figures

Figure 1

14 pages, 2946 KiB  
Article
MeGLYI-13, a Glyoxalase I Gene in Cassava, Enhances the Tolerance of Yeast and Arabidopsis to Zinc and Copper Stresses
by Ruimei Li, Fenlian Tang, Yannian Che, Alisdair R. Fernie, Qin Zhou, Zhongping Ding, Yuan Yao, Jiao Liu, Yajie Wang, Xinwen Hu and Jianchun Guo
Plants 2023, 12(19), 3375; https://doi.org/10.3390/plants12193375 - 25 Sep 2023
Viewed by 814
Abstract
Although zinc and copper are the two essential nutrients necessary for plant growth, their excessive accumulation in soil not only causes environmental pollution but also seriously threatens human health and inhibits plant growth. The breeding of plants with novel zinc or copper toxicity [...] Read more.
Although zinc and copper are the two essential nutrients necessary for plant growth, their excessive accumulation in soil not only causes environmental pollution but also seriously threatens human health and inhibits plant growth. The breeding of plants with novel zinc or copper toxicity tolerance capacities represents one strategy to address this problem. Glyoxalase I (GLYI) family genes have previously been suggested to be involved in the resistance to a wide range of abiotic stresses, including those invoked by heavy metals. Here, a MeGLYI-13 gene cloned from a cassava SC8 cultivar was characterized with regard to its potential ability in resistance to zinc or copper stresses. Sequence alignment indicated that MeGLYI-13 exhibits sequence differences between genotypes. Transient expression analysis revealed the nuclear localization of MeGLYI-13. A nuclear localization signal (NLS) was found in its C-terminal region. There are 12 Zn2+ binding sites and 14 Cu2+ binding sites predicted by the MIB tool, of which six binding sites were shared by Zn2+ and Cu2+. The overexpression of MeGLYI-13 enhanced both the zinc and copper toxicity tolerances of transformed yeast cells and Arabidopsis seedlings. Taken together, our study shows the ability of the MeGLYI-13 gene to resist zinc and copper toxicity, which provides genetic resources for the future breeding of plants resistant to zinc and copper and potentially other heavy metals. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology)
Show Figures

Figure 1

23 pages, 9417 KiB  
Article
Quantification of Glucose Metabolism and Nitrogen Utilization in Two Brassicaceae Species under Bicarbonate and Variable Ammonium Soil Conditions
by Antong Xia, Yanyou Wu, Jiqian Xiang, Hongqing Yin, Jiajia Ming and Zhanghui Qin
Plants 2023, 12(17), 3095; https://doi.org/10.3390/plants12173095 - 29 Aug 2023
Viewed by 612
Abstract
In karst habitats under drought conditions, high bicarbonate (high pH), and an abundant nitrate soil environment, bicarbonate regulates the glycolysis (EMP) and pentose phosphate pathways (PPP), which distribute ATP and NADPH, affecting nitrate (NO3) and ammonium (NH4+) [...] Read more.
In karst habitats under drought conditions, high bicarbonate (high pH), and an abundant nitrate soil environment, bicarbonate regulates the glycolysis (EMP) and pentose phosphate pathways (PPP), which distribute ATP and NADPH, affecting nitrate (NO3) and ammonium (NH4+) utilization in plants. However, the relationship between EMP PPP and NO3, and NH4+ utilization and their responses to bicarbonate and variable ammonium still remains elusive. In this study, we used Brassica napus (Bn, a non-karst-adaptable plant) and Orychophragmus violaceus (Ov, a karst-adaptable plant) as plant materials, employed a bidirectional nitrogen-isotope-tracing method, and performed the quantification of the contribution of EMP and PPP. We found that bicarbonate and ammonium inhibited glucose metabolism and nitrogen utilization in Bn under simulated karst habitats. On the other hand, it resulted in a shift from EMP to PPP to promote ammonium utilization in Ov under high ammonium stress in karst habitats. Compared with Bn, bicarbonate promoted glucose metabolism and nitrogen utilization in Ov at low ammonium levels, leading to an increase in photosynthesis, the PPP, carbon and nitrogen metabolizing enzyme activities, nitrate/ammonium utilization, and total inorganic nitrogen assimilation capacity. Moreover, bicarbonate significantly reduced the growth inhibition of Ov by high ammonium, resulting in an improved PPP, RCRUBP, and ammonium utilization to maintain growth. Quantifying the relationships between EMP, PPP, NO3, and NH4+ utilization can aid the accurate analysis of carbon and nitrogen use efficiency changes in plant species. Therefore, it provides a new prospect to optimize the nitrate/ammonium utilization in plants and further reveals the differential responses of inorganic carbon and nitrogen (C-N) metabolism to bicarbonate and variable ammonium in karst habitats. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology)
Show Figures

Figure 1

13 pages, 2333 KiB  
Article
Genome-Wide Analysis and Expression Profiling of Trehalose-6-Phosphate Phosphatase (TPP) in Punica granatum in Response to Abscisic-Acid-Mediated Drought Stress
by Fatima Omari Alzahrani
Plants 2023, 12(17), 3076; https://doi.org/10.3390/plants12173076 - 28 Aug 2023
Viewed by 844
Abstract
Trehalose, a nonreducing disaccharide, has been linked to plant growth and development as well as stress response. The enzyme trehalose-6-phosphate phosphatase (TPP) plays a crucial role in the production of trehalose in higher plants. This study identified a total of seven TPP family [...] Read more.
Trehalose, a nonreducing disaccharide, has been linked to plant growth and development as well as stress response. The enzyme trehalose-6-phosphate phosphatase (TPP) plays a crucial role in the production of trehalose in higher plants. This study identified a total of seven TPP family genes within the pomegranate species (PgTPP1PgTPP7). Three subgroups of the seven PgTPPs were identified through phylogenetic analysis. The gene length, coding sequence (CD) length, and chromosomal location of the PgTPP genes were studied. In addition, the PgTPP proteins’ length, isoelectric point (Ip), grand average of hydropathicity (GRAVY), conserved domains, conserved motifs, synteny, and phylogenetic relationships with Arabidopsis and tomato TPP proteins were examined. The cis-acting elements in the promoter region and the expression of the PgTPP genes under abscisic acid (ABA)-mediated drought stress as well as the differences in expression in the root, flower, and leaf tissues were also assessed. The PgTPP2 and PgTPP5 genes are involved in the response to abscisic-acid-mediated drought stress, as shown by drought-mediated stress transcriptomes. The PgTPP1 and PgTPP2 genes were expressed only in floral tissue and roots, respectively. The remaining PgTPPs did not exhibit any significant alterations in gene expression in roots, flowers, or leaves. The current study has the potential to provide a comprehensive understanding of the biological characteristics of PgTPP proteins in various developmental processes and their role in the pomegranate plant’s response to different stressors. However, further research is required to explore their precise biological role. Hence, conducting a comprehensive functional validation study on PgTPPs could contribute to the development of stress-resistant agricultural cultivars. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology)
Show Figures

Figure 1

18 pages, 2399 KiB  
Article
Seed Halopriming: A Promising Strategy to Induce Salt Tolerance in Indonesian Pigmented Rice
by Yekti Asih Purwestri, Siti Nurbaiti, Sekar Pelangi Manik Putri, Ignasia Margi Wahyuni, Siti Roswiyah Yulyani, Alfino Sebastian, Tri Rini Nuringtyas and Nobutoshi Yamaguchi
Plants 2023, 12(15), 2879; https://doi.org/10.3390/plants12152879 - 05 Aug 2023
Cited by 1 | Viewed by 1240
Abstract
Unfavorable environmental conditions and climate change impose stress on plants, causing yield losses worldwide. The Indonesian pigmented rice (Oryza sativa L.) cultivars Cempo Ireng Pendek (black rice) and Merah Kalimantan Selatan (red rice) are becoming popular functional foods due to their high [...] Read more.
Unfavorable environmental conditions and climate change impose stress on plants, causing yield losses worldwide. The Indonesian pigmented rice (Oryza sativa L.) cultivars Cempo Ireng Pendek (black rice) and Merah Kalimantan Selatan (red rice) are becoming popular functional foods due to their high anthocyanin contents and have great potential for widespread cultivation. However, their ability to grow on marginal, high-salinity lands is limited. In this study, we investigated whether seed halopriming enhances salt tolerance in the two pigmented rice cultivars. The non-pigmented cultivars IR64, a salt-stress-sensitive cultivar, and INPARI 35, a salt tolerant, were used as control. We pre-treated seeds with a halopriming solution before germination and then exposed the plants to a salt stress of 150 mM NaCl at 21 days after germination using a hydroponic system in a greenhouse. Halopriming was able to mitigate the negative effects of salinity on plant growth, including suppressing reactive oxygen species accumulation, increasing the membrane stability index (up to two-fold), and maintaining photosynthetic pigment contents. Halopriming had different effects on the accumulation of proline, in different rice varieties: the proline content increased in IR64 and Cempo Ireng Pendek but decreased in INPARI 35 and Merah Kalimantan Selatan. Halopriming also had disparate effects in the expression of stress-related genes: OsMYB91 expression was positively correlated with salt treatment, whereas OsWRKY42 and OsWRKY70 expression was negatively correlated with this treatment. These findings highlighted the potential benefits of halopriming in salt-affected agro-ecosystems. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology)
Show Figures

Figure 1

17 pages, 3472 KiB  
Article
MsDjB4, a HSP40 Chaperone in Alfalfa (Medicago sativa L.), Improves Alfalfa Hairy Root Tolerance to Aluminum Stress
by Siyan Liu, Xin Mo, Linjie Sun, Li Gao, Liantai Su, Yuan An and Peng Zhou
Plants 2023, 12(15), 2808; https://doi.org/10.3390/plants12152808 - 28 Jul 2023
Cited by 1 | Viewed by 907
Abstract
The toxicity of aluminum (Al) in acidic soils poses a significant limitation to crop productivity. In this study, we found a notable increase in DnaJ (HSP40) expression in the roots of Al-tolerant alfalfa (WL-525HQ), which we named MsDjB4. Transient conversion [...] Read more.
The toxicity of aluminum (Al) in acidic soils poses a significant limitation to crop productivity. In this study, we found a notable increase in DnaJ (HSP40) expression in the roots of Al-tolerant alfalfa (WL-525HQ), which we named MsDjB4. Transient conversion assays of tobacco leaf epidermal cells showed that MsDjB4 was targeted to the membrane system including Endoplasmic Reticulum (ER), Golgi, and plasma membrane. We overexpressed (MsDjB4-OE) and suppressed (MsDjB4-RNAi) MsDjB4 in alfalfa hairy roots and found that MsDjB4-OE lines exhibited significantly better tolerance to Al stress compared to wild-type and RNAi hairy roots. Specifically, MsDjB4-OE lines had longer root length, more lateral roots, and lower Al content compared to wild-type and RNAi lines. Furthermore, MsDjB4-OE lines showed lower levels of lipid peroxidation and ROS, as well as higher activity of antioxidant enzymes SOD, CAT, and POD compared to wild-type and RNAi lines under Al stress. Moreover, MsDjB4-OE lines had higher soluble protein content compared to wild-type and RNAi lines after Al treatment. These findings provide evidence that MsDjB4 contributes to the improved tolerance of alfalfa to Al stress by facilitating protein synthesis and enhancing antioxidant capacity. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology)
Show Figures

Figure 1

13 pages, 4356 KiB  
Article
Eukaryotic Translation Elongation Factor OsEF1A Positively Regulates Drought Tolerance and Yield in Rice
by Qing Gu, Junfang Kang, Shuang Gao, Yarui Zhao, Huan Yi and Xiaojun Zha
Plants 2023, 12(14), 2593; https://doi.org/10.3390/plants12142593 - 08 Jul 2023
Cited by 1 | Viewed by 1300
Abstract
Drought is one of the most serious stresses affecting rice growth. Drought stress causes accelerated senescence, reduced fertility, and subsequent reductions in crop yield. Eukaryotic translation elongation factor EF1A is an important multifunctional protein that plays an essential role in the translation of [...] Read more.
Drought is one of the most serious stresses affecting rice growth. Drought stress causes accelerated senescence, reduced fertility, and subsequent reductions in crop yield. Eukaryotic translation elongation factor EF1A is an important multifunctional protein that plays an essential role in the translation of eukaryotic proteins. In this study, we localized and cloned the OsEF1A gene in rice (Oryza sativa) in order to clarify its role in drought tolerance and yield. Subcellular localization revealed that it was mainly localized to the cell membrane, cytoskeleton and nucleus. Compared with the wild-type, OsEF1A overexpressing transgenic plants had significantly more tillers and grains per plant, resulting in a significantly higher yield. Increases in the relative water content and proline content were also observed in the transgenic seedlings under drought stress, with a decrease in the malondialdehyde content, all of which are representative of drought tolerance. Taken together, these findings suggest that OsEF1A plays a positive regulatory role in rice nutritional development under drought stress. These findings will help support future studies aimed at improving yield and stress tolerance in rice at the molecular level, paving the way for a new green revolution. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology)
Show Figures

Figure 1

12 pages, 1799 KiB  
Article
The Global Changes of N6-methyldeoxyadenosine in Response to Low Temperature in Arabidopsis thaliana and Rice
by Fei Mao, Hairong Xie, Yucheng Shi, Shasha Jiang, Shuai Wang and Yufeng Wu
Plants 2023, 12(12), 2373; https://doi.org/10.3390/plants12122373 - 19 Jun 2023
Viewed by 1038
Abstract
N6-methyldeoxyadenosine (6mA) is a recently discovered DNA modification involved in regulating plant adaptation to abiotic stresses. However, the mechanisms and changes of 6mA under cold stress in plants are not yet fully understood. Here, we conducted a genome-wide analysis of 6mA and observed [...] Read more.
N6-methyldeoxyadenosine (6mA) is a recently discovered DNA modification involved in regulating plant adaptation to abiotic stresses. However, the mechanisms and changes of 6mA under cold stress in plants are not yet fully understood. Here, we conducted a genome-wide analysis of 6mA and observed that 6mA peaks were predominantly present within the gene body regions under both normal and cold conditions. In addition, the global level of 6mA increased both in Arabidopsis and rice after the cold treatment. The genes that exhibited an up-methylation showed enrichment in various biological processes, whereas there was no significant enrichment observed among the down-methylated genes. The association analysis revealed a positive correlation between the 6mA level and the gene expression level. Joint analysis of the 6mA methylome and transcriptome of Arabidopsis and rice unraveled that fluctuations in 6mA levels caused by cold exposure were not correlated to changes in transcript levels. Furthermore, we discovered that orthologous genes modified by 6mA showed high expression levels; however, only a minor amount of differentially 6mA-methylated orthologous genes were shared between Arabidopsis and rice under low-temperature conditions. In conclusion, our study provides information on the role of 6mA in response to cold stress and reveals its potential for regulating the expression of stress-related genes. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology)
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 1972 KiB  
Review
Effects of Climate Change and Drought Tolerance on Maize Growth
by Kyung-Hee Kim and Byung-Moo Lee
Plants 2023, 12(20), 3548; https://doi.org/10.3390/plants12203548 - 12 Oct 2023
Cited by 3 | Viewed by 2704
Abstract
Climate change is affecting all regions of the world with different climates, and the scale of damage is increasing due to the occurrence of various natural disasters. In particular, maize production is highly affected by abnormal climate events such as heat waves and [...] Read more.
Climate change is affecting all regions of the world with different climates, and the scale of damage is increasing due to the occurrence of various natural disasters. In particular, maize production is highly affected by abnormal climate events such as heat waves and droughts. Increasing temperatures can accelerate growth and shorten the growing season, potentially reducing productivity. Additionally, enhanced temperatures during the ripening period can accelerate the process, reducing crop yields. In addition, drought stress due to water deficit can greatly affect seedling formation, early plant growth, photosynthesis, reproductive growth, and yield, so proper water management is critical to maize growth. Maize, in particular, is tall and broad-leaved, so extreme drought stress at planting can cause leaves to curl and stunt growth. It is important to understand that severe drought can have a detrimental effect on the growth and reproduction of maize. In addition, high temperatures caused by drought stress can inhibit the induction of flowering in male flowers and cause factors that interfere with pollen development. It is therefore important to increase the productivity of all food crops, including maize, while maintaining them in the face of persistent drought caused by climate change. This requires a strategy to develop genetically modified crops and drought-tolerant maize that can effectively respond to climate change. The aim of this paper is to investigate the effects of climate change and drought tolerance on maize growth. We also reviewed molecular breeding techniques to develop drought-tolerant maize varieties in response to climate change. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology)
Show Figures

Figure 1

20 pages, 2411 KiB  
Review
Advances in Receptor-like Protein Kinases in Balancing Plant Growth and Stress Responses
by Qingfeng Zhu, Yanzhao Feng, Jiao Xue, Pei Chen, Aixia Zhang and Yang Yu
Plants 2023, 12(3), 427; https://doi.org/10.3390/plants12030427 - 17 Jan 2023
Cited by 11 | Viewed by 3701
Abstract
Accompanying the process of growth and development, plants are exposed to ever-changing environments, which consequently trigger abiotic or biotic stress responses. The large protein family known as receptor-like protein kinases (RLKs) is involved in the regulation of plant growth and development, as well [...] Read more.
Accompanying the process of growth and development, plants are exposed to ever-changing environments, which consequently trigger abiotic or biotic stress responses. The large protein family known as receptor-like protein kinases (RLKs) is involved in the regulation of plant growth and development, as well as in the response to various stresses. Understanding the biological function and molecular mechanism of RLKs is helpful for crop breeding. Research on the role and mechanism of RLKs has recently received considerable attention regarding the balance between plant growth and environmental adaptability. In this paper, we systematically review the classification of RLKs, the regulatory roles of RLKs in plant development (meristem activity, leaf morphology and reproduction) and in stress responses (disease resistance and environmental adaptation). This review focuses on recent findings revealing that RLKs simultaneously regulate plant growth and stress adaptation, which may pave the way for the better understanding of their function in crop improvement. Although the exact crosstalk between growth constraint and plant adaptation remains elusive, a profound study on the adaptive mechanisms for decoupling the developmental processes would be a promising direction for the future research. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology)
Show Figures

Figure 1

Back to TopTop