Special Issue "Abiotic Stress-Induced Secondary Metabolites Regulating Plant Metabolism"

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Physiology and Metabolism".

Deadline for manuscript submissions: closed (20 October 2023) | Viewed by 2697

Special Issue Editor

College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Interests: phytochemicals accumulation; sprouts producing; seeds germination; gamma-aminobutyric acid metabolism and its signal function; phenolics accumulation; food chemistry; metabolomics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

When plants are exposed to adverse conditions such as mechanical damage, drought, waterlogging, salinity, ultraviolet radiation, heavy metal pollution, etc., its body produces a series of complex biochemical reactions to activate its own defense system in response to environmental stress. At the same time, the plant is often accompanied by the synthesis and accumulation of secondary metabolites with strong antioxidant capacities, such as flavonoids, phenolic acids, and gamma-aminobutyric acid. Besides, the secondary metabolite presents in plants with one or more aromatic rings containing one or more hydroxyl groups, which have a wide spectrum of biological activities, including antioxidant, antibiosis, etc. Therefore, the synthesis and accumulation of plant secondary metabolites have received extensive attention. In higher plants, the secondary metabolites are generally converted from carbohydrates. The plant organism realizes the synthesis and metabolism of specific compounds by regulating the genes, protein expression levels and signaling of key enzymes in its anabolic pathway. At the same time, these secondary metabolites have the role of regulating plant growth and metabolism. This Special Issue of Plants will highlight the function, synthesis, and diversity of plant secondary metabolites in plants and their accumulation under abiotic stress.

Dr. Runqiang Yang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • abiotic stress
  • plants
  • sprouts
  • germination
  • signal transition
  • phenolics accumulation
  • gamma-aminobutyric acid
  • metabolism

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 9157 KiB  
Article
Metabolic Mechanisms Underlying Heat and Drought Tolerance in Lentil Accessions: Implications for Stress Tolerance Breeding
Plants 2023, 12(23), 3962; https://doi.org/10.3390/plants12233962 - 24 Nov 2023
Viewed by 467
Abstract
Climate change has significantly exacerbated the effects of abiotic stresses, particularly high temperatures and drought stresses. This study aims to uncover the mechanisms underlying heat and drought tolerance in lentil accessions. To achieve this objective, twelve accessions were subjected to high-temperature stress (32/20 [...] Read more.
Climate change has significantly exacerbated the effects of abiotic stresses, particularly high temperatures and drought stresses. This study aims to uncover the mechanisms underlying heat and drought tolerance in lentil accessions. To achieve this objective, twelve accessions were subjected to high-temperature stress (32/20 °C), while seven accessions underwent assessment under drought stress conditions (50% of field capacity) during the reproductive stage. Our findings revealed a significant increase in catalase activity across all accessions under both stress conditions, with ILL7814 and ILL7835 recording the highest accumulations of 10.18 and 9.33 under drought stress, respectively, and 14 µmol H2O2 mg protein−1 min−1 under high temperature. Similarly, ascorbate peroxidase significantly increased in all tolerant accessions due to high temperatures, with ILL6359, ILL7835, and ILL8029 accumulating the highest values with up 50 µmol ascorbate mg protein−1 min−1. In contrast, no significant increase was obtained for all accessions subjected to water stress, although the drought-tolerant accessions accumulated more APX activity (16.59 t to 25.08 µmol ascorbate mg protein−1 min−1) than the sensitive accessions. The accessions ILL6075, ILL7814, and ILL8029 significantly had the highest superoxide dismutase activity under high temperature, while ILL6363, ILL7814, and ILL7835 accumulated the highest values under drought stress, each with 22 to 25 units mg protein−1. Under both stress conditions, ILL7814 and ILL7835 recorded the highest contents in proline (38 to 45 µmol proline/g FW), total flavonoids (0.22 to 0.77 mg QE g−1 FW), total phenolics (7.50 to 8.79 mg GAE g−1 FW), total tannins (5.07 to 20 µg CE g−1 FW), and total antioxidant activity (60 to 70%). Further, ILL7814 and ILL6338 significantly recorded the highest total soluble sugar content under high temperature (71.57 and 74.24 mg g−1, respectively), while ILL7835 achieved the maximum concentration (125 mg g−1) under drought stress. The accessions ILL8029, ILL6104, and ILL7814 had the highest values of reducing sugar under high temperature with 0.62 to 0.79 mg g−1, whereas ILL6075, ILL6363, and ILL6362 accumulated the highest levels of this component under drought stress with 0.54 to 0.66 mg g−1. Overall, our findings contribute to a deeper understanding of the metabolomic responses of lentil to drought and heat stresses, serving as a valuable reference for lentil stress tolerance breeding. Full article
Show Figures

Figure 1

12 pages, 2336 KiB  
Article
Investigation into the Relationship between Spermidine Degradation and Phenolic Compounds Biosynthesis in Barley Seedlings under Ultraviolet B Stress
Plants 2023, 12(20), 3533; https://doi.org/10.3390/plants12203533 - 11 Oct 2023
Viewed by 504
Abstract
Barley germination under ultraviolet B (UV-B) illumination stress induces effective accumulation of phenolic compounds in the barley. Spermidine can enhance the biosynthesis of phenolic compounds and alleviate the oxidative damage caused by UV-B. To better understand the function of spermidine, inhibitors of enzymes [...] Read more.
Barley germination under ultraviolet B (UV-B) illumination stress induces effective accumulation of phenolic compounds in the barley. Spermidine can enhance the biosynthesis of phenolic compounds and alleviate the oxidative damage caused by UV-B. To better understand the function of spermidine, inhibitors of enzymes that are involved in the degradation of spermidine and the synthesis of gamma-aminobutyric acid (GABA), the product of spermidine degradation, were applied to barley germinated under UV-B treatment. The results showed a more severe oxidative damage, and a decrease in phenolic acid contents were observed when spermidine degradation was inhibited. However, GABA application did attenuate an increase in electrolyte permeability and MDA content caused by UV-B induced oxidative damage and improved the respiration rate. Meanwhile, GABA application can elevate the accumulation of phenolic compounds by ca. 20%, by elevating the activities of some key enzymes. Furthermore, the application of GABA, together with the inhibitor of spermidine degradation, can alleviate its suppression of the synthesis of phenolic acids, and resistance to UV-B stress. In conclusion, spermidine alleviated oxidative damage and enhanced the accumulation of phenolic compounds using its degradation product. Full article
Show Figures

Figure 1

19 pages, 2885 KiB  
Article
Comparative Physiological and Transcriptome Analyses Reveal Mechanisms of Salicylic-Acid-Reduced Postharvest Ripening in ‘Hosui’ Pears (Pyrus pyrifolia Nakai)
Plants 2023, 12(19), 3429; https://doi.org/10.3390/plants12193429 - 28 Sep 2023
Viewed by 512
Abstract
Postharvest ripening of sand pear fruit leads to quality deterioration, including changes in texture, flavor, and fruit color. Salicylic acid (SA), an important defense-related hormone, delays fruit ripening and maintains fruit quality, but the underling mechanism remains unclear. Herein, we evaluated the efficacy [...] Read more.
Postharvest ripening of sand pear fruit leads to quality deterioration, including changes in texture, flavor, and fruit color. Salicylic acid (SA), an important defense-related hormone, delays fruit ripening and maintains fruit quality, but the underling mechanism remains unclear. Herein, we evaluated the efficacy of SA in delaying the ripening process of Pyrus pyrifolia cv. ’Hosui’ pear fruit, as evidenced by the reduction in fruit weight loss, inhibition of firmness loss, cell wall degradation and soluble sugars, and retention of total phenols. Based on comparative transcriptomic data, a total of 3837 and 1387 differentially expressed genes (DEGs) were identified during room-temperature storage of control fruit and between SA-treated and control fruit, respectively. Further KEGG analysis revealed that the DEGs were mainly implicated in plant hormone signal transduction, starch and sugar metabolism, and cell wall modification. Moreover, exogenous SA treatment also altered the expression of many transcription factor (TF) families, including those in the ethylene-responsive factor (ERF), NAM, ATAF, CUC (NAC), basic helix-loop-helix (bHLH), basic leucine zipper (bZIP), and v-myb avian myeloblastosis viral oncogene homolog (MYB) families. Together, the results offer important insights into the role of SA-responsive genes in controlling fruit ripening in sand pears. Full article
Show Figures

Figure 1

15 pages, 2366 KiB  
Article
GABA Application Enhances Drought Stress Tolerance in Wheat Seedlings (Triticum aestivum L.)
Plants 2023, 12(13), 2495; https://doi.org/10.3390/plants12132495 - 29 Jun 2023
Cited by 3 | Viewed by 772
Abstract
In this study, the effects of γ-aminobutyric acid (GABA) on physio-biochemical metabolism, phenolic acid accumulation, and antioxidant system enhancement in germinated wheat under drought stress was investigated. The results showed that exogenous GABA reduced the oxidative damage in wheat seedlings caused by drought [...] Read more.
In this study, the effects of γ-aminobutyric acid (GABA) on physio-biochemical metabolism, phenolic acid accumulation, and antioxidant system enhancement in germinated wheat under drought stress was investigated. The results showed that exogenous GABA reduced the oxidative damage in wheat seedlings caused by drought stress and enhanced the content of phenolics, with 1.0 mM being the most effective concentration. Six phenolic acids were detected in bound form, including p-hydroxybenzoic acid, vanillic acid, syringic acid, p-coumaric acid, ferulic acid, and sinapic acid. However, only syringic acid and p-coumaric acid were found in free form. A total of 1.0 mM of GABA enhanced the content of total phenolic acids by 28% and 22%, respectively, compared with that of drought stress, on day four and day six of germination. The activities of phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H) and 4-coumarate coenzyme A ligase (4CL) were activated by drought stress plus GABA treatment. Antioxidant enzyme activities were also induced. These results indicate that GABA treatment may be an effective way to relieve drought stress as it activates the antioxidant system of plants by inducing the accumulation of phenolics and the increase in antioxidant enzyme activity. Full article
Show Figures

Figure 1

Back to TopTop