Pharmaceuticals and Cosmeceuticals from Plants: Molecular Pharmacology and Toxicology

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Natural Products".

Deadline for manuscript submissions: closed (30 June 2022) | Viewed by 36101

Special Issue Editors


E-Mail Website
Guest Editor
1. Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
2. School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
3. College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India
Interests: phytomedicine; cosmeceuticals; medicinal plants; bioactivity

E-Mail Website
Co-Guest Editor
Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
Interests: medicinal plants; antimicrobial; ethnopharmacology; antibiofilm; skin microbiome

E-Mail Website
Co-Guest Editor
Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
Interests: anticancer; medicinal plants; angiogenesis; melanoma; antiproliferative

E-Mail Website
Co-Guest Editor
Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
Interests: tuberculosis; immunology; ethnopharmacology; pharmaceuticals

Special Issue Information

Dear Colleagues,

Plant-derived pharmaceuticals and cosmeceuticals are a potential source of new drugs for the treatment of several diseases and disorders. Numerous plant-derived therapies are used in various dosage forms, such as botanical extracts, natural products, as well as compound derivatives and analogs. Therapies from plants and natural products can be used as adjuvants with conventional treatments, for increasing efficacy and potentially lowering systemic toxicity. Drug discovery from natural products and plants should encompass extensive research to determine safety and efficacy. The aim of this Special Edition is to summarize new insights into molecular pharmacology and toxicology, including recent studies and literature on the effect of plants and/or natural products on target molecules associated with various diseases/disorders, their toxicological profiles, their molecular modes of action, and potential drug–herb interaction with conventional treatments. In addition, the focus of this Special Issue is to collate recent developments and findings in the field of pharmaceutical and cosmeceutical drug development from botanical sources and to highlight new developments in these fields.

Prof. Dr. Namrita Lall
Dr. Marco De Canha
Dr. Danielle Berrington
Dr. Anna-Mari Reid
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • medicinal plants
  • pharmaceuticals
  • cosmeceuticals
  • toxicity
  • molecular pharmacology
  • drug interaction
  • mode of action

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 1525 KiB  
Article
In Vivo and In Silico Study of the Antinociceptive and Toxicological Effect of the Extracts of Petiveria alliacea L. Leaves
by Kelly del Carmen Cruz-Salomón, Rosa Isela Cruz-Rodríguez, Josué Vidal Espinosa-Juárez, Abumalé Cruz-Salomón, Alfredo Briones-Aranda, Nancy Ruiz-Lau and Víctor Manuel Ruíz-Valdiviezo
Pharmaceuticals 2022, 15(8), 943; https://doi.org/10.3390/ph15080943 - 29 Jul 2022
Cited by 5 | Viewed by 2089
Abstract
Petiveria alliacea L. is an herb used in traditional medicine in Mexico and its roots have been studied to treat pain. However, until now, the antinociceptive properties of the leaves have not been investigated, being the main section used empirically for the treatment [...] Read more.
Petiveria alliacea L. is an herb used in traditional medicine in Mexico and its roots have been studied to treat pain. However, until now, the antinociceptive properties of the leaves have not been investigated, being the main section used empirically for the treatment of diseases. For this reason, this study aimed to evaluate the antinociceptive and toxoicological activity of various extracts (aqueous, hexanic, and methanolic) from P. alliacea L. leaves in NIH mice and to perform an in silico analysis of the phytochemical compounds. Firstly, the antinociceptive effect was analyzed using the formalin model and the different doses of each of the extracts that were administered orally to obtain the dose–response curves. In addition, acute toxicity was determined by the up and down method and serum biochemical analysis. Later, the phytochemical study of extracts was carried out by thin layer chromatography (TLC) and visible light spectroscopy, and the volatile chemical components were analyzed by gas chromatography-mass spectrometry (GC/MS). Moreover, the most abundant compounds identified in the phytochemical study were analyzed in silico to predict their biological activity (PASSonline) and toxicology (OSIRIS Property Explorer). As a result, it was known that all extracts at doses from 10 to 316 mg/kg significantly reduced the pain response in both phases of the formalin model, with values of 50–60% for the inflammatory response. The toxicological studies (DL50) exhibited that all extracts did not cause any mortality up to the 2000 mg/kg dose level. This was corroborated by the values in the normal range of the biochemical parameters in the serum. Finally, the phytochemical screening of the presence of phenolic structures (coumarins, flavonoids) and terpenes (saponins and terpenes) was verified, and the highest content was of a lipid nature, 1.65 ± 0.54 meq diosgenin/mL in the methanolic extract. A total of 54 components were identified, 11 were the most abundant, and only four (Eicosane, Methyl oleate, 4-bis(1-phenylethyl) phenol, and Ethyl linolenate) of them showed a probability towards active antinociceptive activity in silico greater than 0.5. These results showed that the P. alliacea L. leaf extract possesses molecules with antinociceptive activity. Full article
Show Figures

Graphical abstract

16 pages, 3871 KiB  
Article
Tigecycline and Gentamicin-Combined Treatment Enhances Renal Damage: Oxidative Stress, Inflammatory Reaction, and Apoptosis Interplay
by Dina Elgazzar, Mohamed Aboubakr, Heba Bayoumi, Amany N. Ibrahim, Safwa M. Sorour, Mohamed El-Hewaity, Abulmaaty M. Elsayed, Shaimaa A. Shehata, Khaled A. Bayoumi, Mohammed Alsieni, Maged Behery, Doaa Abdelrahaman, Samah F. Ibrahim and Ahmed Abdeen
Pharmaceuticals 2022, 15(6), 736; https://doi.org/10.3390/ph15060736 - 10 Jun 2022
Cited by 10 | Viewed by 2263
Abstract
Although the combination of antibiotics is generally well-tolerated, they may have nephrotoxic effects. This study investigated whether tigecycline (TG) and gentamicin (GM) co-administration could accelerate renal damage. Male Wistar rats were randomly divided into six experimental groups: the control, TG7 (tigecycline, 7 mg/kg), [...] Read more.
Although the combination of antibiotics is generally well-tolerated, they may have nephrotoxic effects. This study investigated whether tigecycline (TG) and gentamicin (GM) co-administration could accelerate renal damage. Male Wistar rats were randomly divided into six experimental groups: the control, TG7 (tigecycline, 7 mg/kg), TG14 (tigecycline, 14 mg/kg), GM (gentamicin, 80 mg/kg), TG7+GM, and TG14+GM groups. The combination of TG and GM evoked renal damage seen by the disruption of kidney function tests. The perturbation of renal tissue was mainly confounded to the TG and GM-induced oxidative damage, which was exhibited by marked increases in renal MDA (malondialdehyde) along with a drastic reduction in GSH (reduced-glutathione) content and CAT (catalase) activity compared to their individual treatments. More obvious apoptotic events and inflammation were also revealed by elevating the annexin-V and interleukin-6 (IL-6) levels, aside from the upregulation of renal PCNA (proliferating cell nuclear antigen) expression in the TG and GM concurrent treatment. The principal component analysis indicated that creatinine, urea, annexin-V, IL-6, and MDA all played a role in discriminating the TG and GM combined toxicity. Oxidative stress, inflammatory response, and apoptosis were the key mechanisms involved in this potentiated toxicity. Full article
Show Figures

Figure 1

12 pages, 2387 KiB  
Article
Polydatin Incorporated in Polycaprolactone Nanofibers Improves Osteogenic Differentiation
by Stefania Lama, Amalia Luce, Giuseppe Bitti, Pilar Chacon-Millan, Annalisa Itro, Pasquale Ferranti, Giovanni D’Auria, Marcella Cammarota, Giovanni Francesco Nicoletti, Giuseppe Andrea Ferraro, Chiara Schiraldi, Michele Caraglia, Evzen Amler and Paola Stiuso
Pharmaceuticals 2022, 15(6), 727; https://doi.org/10.3390/ph15060727 - 8 Jun 2022
Cited by 4 | Viewed by 2163
Abstract
Polycaprolactone nanofibers are used as scaffolds in the field of tissue engineering for tissue regeneration or drug delivery. Polycaprolactone (PCL) is a biodegradable hydrophobic polyester used to obtain implantable nanostructures, which are clinically applicable due to their biological safety. Polydatin (PD), a glycosidic [...] Read more.
Polycaprolactone nanofibers are used as scaffolds in the field of tissue engineering for tissue regeneration or drug delivery. Polycaprolactone (PCL) is a biodegradable hydrophobic polyester used to obtain implantable nanostructures, which are clinically applicable due to their biological safety. Polydatin (PD), a glycosidic precursor of resveratrol, is known for its antioxidant, antitumor, antiosteoporotic, and bone regeneration activities. We aimed to use the osteogenic capacity of polydatin to create a biomimetic innovative and patented scaffold consisting of PCL-PD for bone tissue engineering. Both osteosarcoma cells (Saos-2) and mesenchymal stem cells (MSCs) were used to test the in vitro cytocompatibility of the PD-PCL scaffold. Reverse-phase (RP) HPLC was used to evaluate the timing release of PD from the PCL-PD nanofibers and the MTT assay, scanning electron microscopy, and alkaline phosphatase (ALP) activity were used to evaluate the proliferation, adhesion, and cellular differentiation in both osteosarcoma and human mesenchymal stem cells (MSCs) seeded on PD-PCL nanofibers. The proliferation of osteosarcoma cells (Saos-2) on the PD-PCL scaffold decreased when compared to cells grown on PLC nanofibers, whereas the proliferation of MSCs was comparable in both PCL and PD-PCL nanofibers. Noteworthy, after 14 days, the ALP activity was higher in both Saos-2 cells and MSCs cultivated on PD-PCL than on empty scaffolds. Moreover, the same cells showed a spindle-shaped morphology after 14 days when grown on PD-PCL as shown by SEM. In conclusion, we provide evidence that nanofibers appropriately coated with PD support the adhesion and promote the osteogenic differentiation of both human osteosarcoma cells and MSCs. Full article
Show Figures

Figure 1

16 pages, 4309 KiB  
Article
Rhinacanthin-C but Not -D Extracted from Rhinacanthus nasutus (L.) Kurz Offers Neuroprotection via ERK, CHOP, and LC3B Pathways
by Varaporn Rakkhittawattana, Pharkphoom Panichayupakaranant, Mani I. Prasanth, James M. Brimson and Tewin Tencomnao
Pharmaceuticals 2022, 15(5), 627; https://doi.org/10.3390/ph15050627 - 20 May 2022
Cited by 1 | Viewed by 2445
Abstract
Neurodegenerative diseases present an increasing problem as the world’s population ages; thus, the discovery of new drugs that prevent diseases such as Alzheimer’s, and Parkinson’s diseases are vital. In this study, Rhinacanthin-C and -D were isolated from Rhinacanthus nasustus, using ethyl acetate, [...] Read more.
Neurodegenerative diseases present an increasing problem as the world’s population ages; thus, the discovery of new drugs that prevent diseases such as Alzheimer’s, and Parkinson’s diseases are vital. In this study, Rhinacanthin-C and -D were isolated from Rhinacanthus nasustus, using ethyl acetate, followed by chromatography to isolate Rhinacanthin-C and -D. Both compounds were confirmed using NMR and ultra-performance-LCMS. Using glutamate toxicity in HT-22 cells, we measured cell viability and apoptosis, ROS build-up, and investigated signaling pathways. We show that Rhinacanthin-C and 2-hydroxy-1,4-naphthoquinone have neuroprotective effects against glutamate-induced apoptosis in HT-22 cells. Furthermore, we see that Rhinacanthin-C resulted in autophagy inhibition and increased ER stress. In contrast, low concentrations of Rhinacanthin-C and 2-hydroxy-1,4-naphthoquinone prevented ER stress and CHOP expression. All concentrations of Rhinacanthin-C prevented ROS production and ERK1/2 phosphorylation. We conclude that, while autophagy is present in HT-22 cells subjected to glutamate toxicity, its inhibition is not necessary for cryoprotection. Full article
Show Figures

Graphical abstract

19 pages, 6211 KiB  
Article
Cytotoxicity of Thioalkaloid-Enriched Nuphar lutea Extract and Purified 6,6′-Dihydroxythiobinupharidine in Acute Myeloid Leukemia Cells: The Role of Oxidative Stress and Intracellular Calcium
by Suchismita Muduli, Avi Golan-Goldhirsh, Jacob Gopas and Michael Danilenko
Pharmaceuticals 2022, 15(4), 410; https://doi.org/10.3390/ph15040410 - 28 Mar 2022
Cited by 5 | Viewed by 2215
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by uncontrolled proliferation of immature myeloid progenitors. Here, we report the in vitro antileukemic effects of the sesquiterpene thioalkaloid-enriched fraction of the Nuphar lutea leaf extract (NUP) and a purified thioalkaloid 6,6′-dihydroxythiobinupharidine (DTBN). [...] Read more.
Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by uncontrolled proliferation of immature myeloid progenitors. Here, we report the in vitro antileukemic effects of the sesquiterpene thioalkaloid-enriched fraction of the Nuphar lutea leaf extract (NUP) and a purified thioalkaloid 6,6′-dihydroxythiobinupharidine (DTBN). Treatment with 0.3–10 µg/mL NUP caused a dose- and time-dependent reduction in proliferation and viability of human AML cells (KG-1a, HL60 and U937). This was associated with apoptosis induction manifested by annexin-V/propidium iodide binding as well as cleavage of caspases 8, 9, and 3 as well as poly (ADP-ribose) polymerase. Caspase-dependence of the apoptotic effect was confirmed using the pan-caspase inhibitor Q-VD-OPH. NUP induced significant biphasic changes in the cytosolic levels of reactive oxygen species (ROS) compared to untreated cells—a decrease at early time points (2–4 h) and an increase after a longer incubation (24 h). ROS accumulation was accompanied by lowering the cellular glutathione (GSH) levels. In addition, NUP treatment resulted in elevation of the cytosolic Ca2+ (Ca2+cyt) levels. The thiol antioxidant and glutathione precursor N-acetyl cysteine prevented NUP-induced ROS accumulation and markedly inhibited apoptosis. A similar antiapoptotic effect was obtained by Ca2+cyt chelating using BAPTA. These data indicate that NUP-induced cell death is mediated, at least in part, by the induction of oxidative stress and Ca2+cyt accumulation. However, a substantial apoptotic activity of pure DTBN (0.05–0.25 µg/mL), was found to be independent of cytosolic ROS or Ca2+, suggesting that alternative mechanisms are involved in DTBN-induced cytotoxicity. Notably, neither NUP nor DTBN treatment significantly induced cell death of normal human peripheral blood mononuclear cells. Our results provide the basis for further investigation of the antileukemic potential of NUP and its active constituents. Full article
Show Figures

Figure 1

18 pages, 4164 KiB  
Article
Carajurin Induces Apoptosis in Leishmania amazonensis Promastigotes through Reactive Oxygen Species Production and Mitochondrial Dysfunction
by João Victor Silva-Silva, Carla J. Moragas-Tellis, Maria S. S. Chagas, Paulo Victor R. Souza, Davyson L. Moreira, Daiana J. Hardoim, Noemi N. Taniwaki, Vanessa F. A. Costa, Alvaro L. Bertho, Daniela Brondani, Eduardo Zapp, Aldo Sena de Oliveira, Kátia S. Calabrese, Maria D. Behrens and Fernando Almeida-Souza
Pharmaceuticals 2022, 15(3), 331; https://doi.org/10.3390/ph15030331 - 9 Mar 2022
Cited by 13 | Viewed by 3542
Abstract
Carajurin is the main constituent of Arrabidaea chica species with reported anti-Leishmania activity. However, its mechanism of action has not been described. This study investigated the mechanisms of action of carajurin against promastigote forms of Leishmania amazonensis. Carajurin was effective against [...] Read more.
Carajurin is the main constituent of Arrabidaea chica species with reported anti-Leishmania activity. However, its mechanism of action has not been described. This study investigated the mechanisms of action of carajurin against promastigote forms of Leishmania amazonensis. Carajurin was effective against promastigotes with IC50 of 7.96 ± 1.23 μg.mL−1 (26.4 µM), and the cytotoxic concentration for peritoneal macrophages was 258.2 ± 1.20 μg.mL−1 (856.9 µM) after 24 h of treatment. Ultrastructural evaluation highlighted pronounced swelling of the kinetoplast with loss of electron-density in L. amazonensis promastigotes induced by carajurin treatment. It was observed that carajurin leads to a decrease in the mitochondrial membrane potential (p = 0.0286), an increase in reactive oxygen species production (p = 0.0286), and cell death by late apoptosis (p = 0.0095) in parasites. Pretreatment with the antioxidant NAC prevented ROS production and significantly reduced carajurin-induced cell death. The electrochemical and density functional theory (DFT) data contributed to support the molecular mechanism of action of carajurin associated with the ROS generation, for which it is possible to observe a correlation between the LUMO energy and the electroactivity of carajurin in the presence of molecular oxygen. All these results suggest that carajurin targets the mitochondria in L. amazonensis. In addition, when assessed for its drug-likeness, carajurin follows Lipinski’’s rule of five, and the Ghose, Veber, Egan, and Muegge criteria. Full article
Show Figures

Figure 1

18 pages, 3524 KiB  
Article
Ethanolic Fenugreek Extract: Its Molecular Mechanisms against Skin Aging and the Enhanced Functions by Nanoencapsulation
by Waleewan Eaknai, Phichaporn Bunwatcharaphansakun, Chutikorn Phungbun, Angkana Jantimaporn, Sasikan Chaisri, Suwimon Boonrungsiman, Ubonthip Nimmannit and Mattaka Khongkow
Pharmaceuticals 2022, 15(2), 254; https://doi.org/10.3390/ph15020254 - 20 Feb 2022
Cited by 6 | Viewed by 8446
Abstract
Fenugreek, or Trigonella foenum-graecum L. (family Leguminosae) seeds, are typically used as food supplements to increase postnatal lactation. Fenugreek extract displays antioxidative and anti-inflammatory properties, but its mechanisms against skin aging have not been exploited. In this research, we are the first to [...] Read more.
Fenugreek, or Trigonella foenum-graecum L. (family Leguminosae) seeds, are typically used as food supplements to increase postnatal lactation. Fenugreek extract displays antioxidative and anti-inflammatory properties, but its mechanisms against skin aging have not been exploited. In this research, we are the first to define an in vitro collagenase inhibitory activity of fenugreek extract (IC50 = 0.57 ± 0.02 mg/mL), which is 2.6 times more potent than vitamin C (IC50 = 1.46 mg/mL). Nanoencapsulation has been applied to improve the extract stability, and subsequently enhanced its bioactivities. Liponiosome encapsulating fenugreek extract (LNF) was prepared using a high-speed homogenizer, resulting in homogeneous spherical nanoparticles with sizes in the range of 174.7 ± 49.2 nm, 0.26 ± 0.04 in PdI, and 46.6 ± 7.4% of entrapment efficiency. LNF formulation significantly facilitated a sustained release and significantly enhanced skin penetration over the extracts, suggesting a potential use of LNF for transdermal delivery. The formulated LNF was highly stable, not toxic to human fibroblast, and was able to enhance cell viability, collagen production, and inhibit MMP1, MMP9, IL-6, and IL-8 secretions compared to the extract in the co-cultured skin model. Therefore, ethanolic fenugreek extract and its developed LNF display molecular mechanisms against skin aging and could potentially be used as an innovative ingredient for the prevention of skin aging. Full article
Show Figures

Graphical abstract

24 pages, 39921 KiB  
Article
Wound-Healing Potential of Rhoifolin-Rich Fraction Isolated from Sanguisorba officinalis Roots Supported by Enhancing Re-Epithelization, Angiogenesis, Anti-Inflammatory, and Antimicrobial Effects
by Walaa A. Negm, Aya H. El-Kadem, Engy Elekhnawy, Nashwah G. M. Attallah, Gadah Abdulaziz Al-Hamoud, Thanaa A. El-Masry and Ahmed Zayed
Pharmaceuticals 2022, 15(2), 178; https://doi.org/10.3390/ph15020178 - 31 Jan 2022
Cited by 28 | Viewed by 3723
Abstract
A wound is a complicated bioprocess resulting in significant tissue damage, which is worsened by a secondary bacterial infection, commonly Pseudomonas aeruginosa and Staphylococcus aureus. The goal of our study was to investigate the metabolic profile and possible wound-healing effect of Sanguisorba [...] Read more.
A wound is a complicated bioprocess resulting in significant tissue damage, which is worsened by a secondary bacterial infection, commonly Pseudomonas aeruginosa and Staphylococcus aureus. The goal of our study was to investigate the metabolic profile and possible wound-healing effect of Sanguisorba officinalis roots rhoifolin rich fraction (RRF). The LC-ESI-MS/MS analysis of S. officinalis roots crude ethanol extract resulted in a tentative identification of 56 bioactive metabolites, while a major flavonoid fraction was isolated by column chromatography and identified by thin-layer chromatography coupled with electrospray ionization/mass spectrometry (TLC-ESI/MS), where rhoifolin was the major component representing 94.5% of its content. The antibiofilm activity of RRF on the mono-species and dual-species biofilm of P. aeruginosa and S. aureus was investigated. RRF exhibited inhibitory activity on P. aeruginosa and S. aureus mono-species biofilm at 2× minimum inhibitory concentration (MIC) and 4× MIC values. It also significantly inhibited the dual-species biofilm at 4× MIC values. Moreover, the wound-healing characteristics of RRF gel formulation were investigated. Rats were randomly allocated into four groups (eight rats in each): Untreated control; Blank gel; Betadine cream, and RRF gel groups. Animals were anesthetized, and full-thickness excisional skin wounds were created on the shaved area in the dorsal skin. The gels were topically applied to the wound’s surface daily for 10 days. The results demonstrated that RRF had a promising wound-healing effect by up-regulating the platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), keratinocyte growth factor (KGF), and fibronectin, while metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), IL-1β, and nitric oxide (NO) levels were suppressed. It also enhanced the immune staining of transforming growth factor (TGF-β) and improved histopathological findings. Furthermore, it displayed an immunomodulatory action on lipopolysaccharide-induced peripheral blood mononuclear cells. Hence, the wound-healing effect of rhoifolin was confirmed by supporting re-epithelization, angiogenesis, antibacterial, immunomodulatory, and anti-inflammatory activities. Full article
Show Figures

Figure 1

16 pages, 3728 KiB  
Article
Mangostanin, a Xanthone Derived from Garcinia mangostana Fruit, Exerts Protective and Reparative Effects on Oxidative Damage in Human Keratinocytes
by Mario Abate, Cristina Pagano, Milena Masullo, Marianna Citro, Simona Pisanti, Sonia Piacente and Maurizio Bifulco
Pharmaceuticals 2022, 15(1), 84; https://doi.org/10.3390/ph15010084 - 11 Jan 2022
Cited by 19 | Viewed by 3654
Abstract
The fruit of Garcinia mangostana (mangosteen) is known in ancient traditional Asian medicine for its antioxidant, anti-inflammatory, immunomodulatory and anticancer activities. These effects are mainly due to the action of polyphenols known as xanthones, which are contained in the pericarp of the fruit. [...] Read more.
The fruit of Garcinia mangostana (mangosteen) is known in ancient traditional Asian medicine for its antioxidant, anti-inflammatory, immunomodulatory and anticancer activities. These effects are mainly due to the action of polyphenols known as xanthones, which are contained in the pericarp of the fruit. In recent years, there has been a growing interest from pharmaceutical companies in formulating new topicals based on mangosteen full extracts to prevent skin aging. However, the molecules responsible for these effects and the mechanisms involved have not been investigated so far. Here, the arils and shells of Garcinia mangostana were extracted with chloroform and methanol, and the extracts were further purified to yield 12 xanthone derivatives. Their effects were evaluated using in vitro cultures of human epidermal keratinocytes. After confirming the absence of cytotoxicity, we evaluated the antioxidant potential of these compounds, identifying mangostanin as capable of both protecting and restoring oxidative damage induced by H2O2. We showed how mangostanin, by reducing the generation of intracellular reactive oxygen species (ROS), prevents the activation of AKT (protein kinase B), ERK (extracellular signal-regulated kinase), p53, and other cellular pathways underlying cell damage and apoptosis activation. In conclusion, our study is the first to demonstrate that mangostanin is effective in protecting the skin from the action of free radicals, thus preventing skin aging, confirming a potential toward its development in the nutraceutical and cosmeceutical fields. Full article
Show Figures

Figure 1

20 pages, 4101 KiB  
Article
In Vitro Study of Licorice on IL-1β-Induced Chondrocytes and In Silico Approach for Osteoarthritis
by Akhtar Ali, YoungJoon Park, Jeonghoon Lee, Hyo-Jin An, Jong-Sik Jin, Jong-Hyun Lee, Jaeki Chang, Dong-Keun Kim, Bonhyuk Goo, Yeon Cheol Park, Kang-Hyun Leem, Shin Seong and Wonnam Kim
Pharmaceuticals 2021, 14(12), 1337; https://doi.org/10.3390/ph14121337 - 20 Dec 2021
Cited by 8 | Viewed by 3789
Abstract
Osteoarthritis (OA) is a common degenerative joint disorder that affects joint function, mobility, and pain. The release of proinflammatory cytokines stimulates matrix metalloproteinases (MMPs) and aggrecanase production which further induces articular cartilage degradation. Hypertrophy-like changes in chondrocytes are considered to be an important [...] Read more.
Osteoarthritis (OA) is a common degenerative joint disorder that affects joint function, mobility, and pain. The release of proinflammatory cytokines stimulates matrix metalloproteinases (MMPs) and aggrecanase production which further induces articular cartilage degradation. Hypertrophy-like changes in chondrocytes are considered to be an important feature of OA pathogenesis. A Glycyrrhiza new variety, Wongam (WG), was developed by the Korea Rural Development Administration to enhance the cultivation and quality of Glycyrrhizae Radix et Rhizoma (licorice). This study examined the regulatory effect of WG against hypertrophy-like changes such as RUNX2, Collagen X, VEGFA, MMP-13 induction, and Collagen II reduction induced by IL-1β in SW1353 human chondrocytes. Additionally, in silico methods were performed to identify active compounds in licorice to target chondrocyte hypertrophy-related proteins. WG showed inhibitory effects against IL-1β-induced chondrocyte hypertrophy by regulating both HDAC4 activation via the PTH1R/PKA/PP2A pathway and the SOX9/β-catenin signaling pathway. In silico analysis demonstrated that 21 active compounds from licorice have binding potential with 11 targets related to chondrocyte hypertrophy. Further molecular docking analysis and in vivo studies elicited four compounds. Based on HPLC, isoliquiritigenin and its precursors were identified and quantified. Taken together, WG is a potential therapeutic agent for chondrocyte hypertrophy-like changes in OA. Full article
Show Figures

Figure 1

Back to TopTop