Special Issue "Novel Nanostructured Materials and Their Applications in Wastewater Treatment"

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Environmental Nanoscience and Nanotechnology".

Deadline for manuscript submissions: 20 January 2024 | Viewed by 2461

Special Issue Editor

Dr. Yong Li
E-Mail Website
Guest Editor
School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi’an 710021, China
Interests: nanomaterials; self-cleaning materials; catalysis; photothermal conversion

Special Issue Information

Dear Colleagues,

In recent decades, the greatest challenge in wastewater treatment has been to reduce its negative economic and environmental implications. Nanostructured materials have many unique properties, such as a large surface area, structural anisotropy, tunable bandgap, and high carrier mobility. As a result of these properties, they have attracted increasing research interest for their application in electronics, environmental pollution prevention, and catalysis, as well as in energy storage and energy conversion. Overall, nanomaterials have the potential to meet the higher effluent quality requirements and reduce the energy consumption in wastewater treatment.

This Special Issue focuses on the properties of nanostructured materials and their associated novel devices for wastewater treatment. We welcome submissions of original research-based articles and reviews related to nanostructured materials.

Dr. Yong Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanostructured materials
  • photocatalysis
  • novel device
  • wastewater treatment
  • photothermal conversion
  • interface evaporator

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 5329 KiB  
Article
Carbon-in-Silicate Nanohybrid Constructed by In Situ Confined Conversion of Organics in Rectorite for Complete Removal of Dye from Water
Nanomaterials 2023, 13(19), 2627; https://doi.org/10.3390/nano13192627 - 23 Sep 2023
Viewed by 630
Abstract
The complete removal of low concentration organic pollutants from wastewater to obtain clean water has always been a highly desired but challenging issue. In response to this, we proposed a new strategy to fabricate a carbon-in-silicate nanohybrid composite by recycling dye-loaded layered clay [...] Read more.
The complete removal of low concentration organic pollutants from wastewater to obtain clean water has always been a highly desired but challenging issue. In response to this, we proposed a new strategy to fabricate a carbon-in-silicate nanohybrid composite by recycling dye-loaded layered clay adsorbent and converting them to new heterogeneous carbon-in-silicate nanocomposite through an associated calcination-hydrothermal activation process. It has been confirmed that most of the dye molecules were present in waste rectorite adsorbent using an intercalation mode, which can be in situ converted to carbon in the confined interlayer spacing of rectorite. The further hydrothermal activation process may further improve the pore structure and increase surface active sites. As expected, the optimal composite shows extremely high removal rates of 99.6% and 99.5% for Methylene blue (MB) and Basic Red 14 (BR) at low concentrations (25 mg/L), respectively. In addition, the composite adsorbent also shows high removal capacity for single-component and two-component dyes in deionized water and actual water (i.e., Yellow River water, Yangtze River water, and seawater) with a removal rate higher than 99%. The adsorbent has good reusability, and the adsorption efficiency is still above 93% after five regeneration cycles. The waste clay adsorbent-derived composite adsorbent can be used as an inexpensive material for the decontamination of dyed wastewater. Full article
Show Figures

Figure 1

16 pages, 2611 KiB  
Article
Co-Carbonized Waste Polythene/Sugarcane Bagasse Nanocomposite for Aqueous Environmental Remediation Applications
Nanomaterials 2023, 13(7), 1193; https://doi.org/10.3390/nano13071193 - 27 Mar 2023
Cited by 5 | Viewed by 801
Abstract
The conversion of worthless municipal solid wastes to valuables is a major step towards environmental conservation and sustainability. This work successfully proposed a technique to utilize the two most commonly available municipal solid wastes viz polythene (PE) and sugarcane bagasse (SB) for water [...] Read more.
The conversion of worthless municipal solid wastes to valuables is a major step towards environmental conservation and sustainability. This work successfully proposed a technique to utilize the two most commonly available municipal solid wastes viz polythene (PE) and sugarcane bagasse (SB) for water decolorization application. An SBPE composite material was developed and co-pyrolyzed under an inert atmosphere to develop the activated SBPEAC composite. Both SBPE and SBPEAC composites were characterized to analyze their morphological characteristics, specific surface area, chemical functional groups, and elemental composition. The adsorption efficacies of the composites were comparatively tested in the removal of malachite green (MG) from water. The SBPEAC composite had a specific surface area of 284.5 m2/g and a pore size of ~1.33 nm. Batch-scale experiments revealed that the SBPEAC composite performed better toward MG adsorption compared to the SBPE composite. The maximum MG uptakes at 318 K on SBPEAC and SBPE were 926.6 and 375.6 mg/g, respectively. The adsorption of MG on both composites was endothermic. The isotherm and kinetic modeling data for MG adsorption on SBPEAC was fitted to pseudo-second-order kinetic and Langmuir isotherm models, while Elovich kinetic and D-R isotherm models were better fitted for MG adsorption on SBPE. Mechanistically, the MG adsorption on both SBPE and SBPEAC composites involved electrostatic interaction, H-bonding, and π-π/n-π interactions. Full article
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 5565 KiB  
Review
Superhydrophobic Flexible Strain Sensors Constructed Using Nanomaterials: Their Fabrications and Sustainable Applications
Nanomaterials 2023, 13(19), 2639; https://doi.org/10.3390/nano13192639 - 26 Sep 2023
Viewed by 802
Abstract
Superhydrophobic flexible strain sensors, which combine superhydrophobic coatings with highly sensitive flexible sensors, significantly enhance sensor performance and expand applications in human motion monitoring. Superhydrophobic coatings provide water repellency, surface self-cleaning, anti-corrosion, and anti-fouling properties for the sensors. Additionally, they enhance equipment durability. [...] Read more.
Superhydrophobic flexible strain sensors, which combine superhydrophobic coatings with highly sensitive flexible sensors, significantly enhance sensor performance and expand applications in human motion monitoring. Superhydrophobic coatings provide water repellency, surface self-cleaning, anti-corrosion, and anti-fouling properties for the sensors. Additionally, they enhance equipment durability. At present, many studies on superhydrophobic flexible sensors are still in the early research stage; the wear resistance and stability of sensors are far from reaching the level of industrial application. This paper discusses fundamental theories such as the wetting mechanism, tunneling effect, and percolation theory of superhydrophobic flexible sensors. Additionally, it reviews commonly used construction materials and principles of these sensors. This paper discusses the common preparation methods for superhydrophobic flexible sensors and summarizes the advantages and disadvantages of each method to identify the most suitable approach. Additionally, this paper summarizes the wide-ranging applications of the superhydrophobic flexible sensor in medical health, human motion monitoring, anti-electromagnetic interference, and de-icing/anti-icing, offering insights into these fields. Full article
Show Figures

Figure 1

Back to TopTop