molecules-logo

Journal Browser

Journal Browser

Special Issue "Feature Papers in Photochemistry and Photocatalysis"

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Photochemistry".

Deadline for manuscript submissions: 31 March 2024 | Viewed by 4473

Special Issue Editors

Department of Applied Science and Technology and PoliTO BiomED Interdepartmental Lab, Politecnico di Torino; INSTM Unit of Torino—Politecnico, 10129 Turin, Italy
Interests: surface properties of materials; nanoporous materials; TiO2 modification; photocatalysis; emerging pollutants' removal; IR spectroscopy; CO2 reduction
Special Issues, Collections and Topics in MDPI journals
Department of Applied Chemistry, South China University of Technology, Guangzhou 510640, China
Interests: porphyrin; corrole; bioinorganic chemistry; nonlinear optical material; catalytic oxidation; anti-tumor complexes; photodynamic therapy; photocatalytic chemistry

Special Issue Information

Dear Colleagues,

We are pleased to announce the upcoming Special Issue of Molecules entitled “Feature Papers in Photochemistry and Photocatalysis”. This Issue will constitute a collection of important high-quality papers (original research articles or comprehensive reviews) and will be published in an open access format and host the work of Editorial Board Members or prominent scholars invited by the Editorial Office and the Guest Editors. We aim to gather state-of-the-art or new cutting-edge developments, covering all kinds of topics in the field of photochemistry and photocatalysis through the production of selected works in the hope of making outstanding contributions to the community. This Issue will be a forum for disseminating excellent research findings and sharing innovative ideas in the field.

Prof. Dr. Barbara Bonelli
Prof. Dr. Hai-yang Liu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photocatalytic processes
  • quantum yield
  • solar light
  • upconversion
  • heterojunctions

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

9 pages, 3052 KiB  
Communication
The Use of Iron-Doped Anatase TiO2 Nanofibers for Enhanced Photocatalytic Fenton-like Reaction to Degrade Tylosin
Molecules 2023, 28(19), 6977; https://doi.org/10.3390/molecules28196977 - 08 Oct 2023
Viewed by 530
Abstract
The removal of antibiotics from wastewater to prevent their environmental accumulation is significant for human health and ecosystems. Herein, iron (Fe)-atom-doped anatase TiO2 nanofibers (Fe-TNs) were manufactured for the photocatalytic Fenton-like decomposition of tylosin (TYL) under LED illumination. Compared with the pristine [...] Read more.
The removal of antibiotics from wastewater to prevent their environmental accumulation is significant for human health and ecosystems. Herein, iron (Fe)-atom-doped anatase TiO2 nanofibers (Fe-TNs) were manufactured for the photocatalytic Fenton-like decomposition of tylosin (TYL) under LED illumination. Compared with the pristine TiO2 nanofibers (TNs), the optimized Fe-TNs exhibited improved visible-light-driven photocatalytic Fenton-like activity with a TYL degradation efficiency of 98.5% within 4 h. The effective TYL degradation could be attributed to the expanded optical light absorption and accelerated separation and migration of photogenerated electrons and holes after the introduction of Fe. The photogenerated electrons were highly conducive to the generation of active SO4•− radicals as they facilitated Fe(III)/Fe(II) cycles, and to oxidizing TYL. Moreover, the holes could be involved in TYL degradation. Thus, a significant enhancement in TYL degradation could be achieved. This research verifies the use of iron-doped anatase nanofibers as an effective method to synthesize novel photocatalytic Fenton-like catalysts through surface engineering for wastewater remediation. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry and Photocatalysis)
Show Figures

Graphical abstract

22 pages, 4968 KiB  
Article
Enhanced Photocatalytic Degradation of Malachite Green Dye Using Silver–Manganese Oxide Nanoparticles
Molecules 2023, 28(17), 6241; https://doi.org/10.3390/molecules28176241 - 25 Aug 2023
Cited by 2 | Viewed by 1042
Abstract
Efficient and excellent nanoparticles are required for the degradation of organic dyes in photocatalysis. In this study, silver–manganese oxide nanoparticles (Ag-Mn-NPs) were synthesized through a wet chemical precipitation method and characterized as an advanced catalyst that has enhanced photocatalytic activity under sunlight irradiation. [...] Read more.
Efficient and excellent nanoparticles are required for the degradation of organic dyes in photocatalysis. In this study, silver–manganese oxide nanoparticles (Ag-Mn-NPs) were synthesized through a wet chemical precipitation method and characterized as an advanced catalyst that has enhanced photocatalytic activity under sunlight irradiation. The nanoparticles were characterized using scanning electron microscopy (SEM), XRD, UV–vis light spectra, and energy-dispersive X-ray (EDX) spectroscopy, revealing their spherical and agglomerated form. The EDX spectra confirmed the composition of the nanoparticles, indicating their presence in oxide form. These bimetallic oxide nanoparticles were employed as photocatalysts for the degradation of malachite green (MG) dye under sunlight irradiation in an aqueous medium. The study investigated the effects of various parameters, such as irradiation time, catalyst dosage, recovered catalyst dosage, dye concentration, and pH, on the dye’s photodegradation. The results showed that Ag-Mn oxide nanoparticles exhibited high photocatalytic activity, degrading 92% of the dye in 100 min. A longer irradiation time led to increased dye degradation. Moreover, a higher catalyst dosage resulted in a higher dye degradation percentage, with 91% degradation achieved using 0.0017 g of the photocatalyst in 60 min. Increasing the pH of the medium also enhanced the dye degradation, with 99% degradation achieved at pH 10 in 60 min. However, the photodegradation rate decreased with increasing dye concentration. The Ag-Mn oxide nanoparticles demonstrate excellent potential as a reliable visible-light-responsive photocatalyst for the efficient degradation of organic pollutants in wastewater treatment. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry and Photocatalysis)
Show Figures

Figure 1

16 pages, 4359 KiB  
Article
Construction of S-Scheme 2D/2D Crystalline Carbon Nitride/BiOIO3 van der Waals Heterojunction for Boosted Photocatalytic Degradation of Antibiotics
Molecules 2023, 28(13), 5098; https://doi.org/10.3390/molecules28135098 - 29 Jun 2023
Cited by 3 | Viewed by 660
Abstract
Utilization of semiconductor photocatalyst materials to degrade pollutants for addressing environmental pollution problems has become a research focus in recent years. In this work, a 2D/2D S-scheme crystalline carbon nitride (CCN)/BiOIO3 (BOI) van der Waals heterojunction was successfully constructed for effectively enhancing [...] Read more.
Utilization of semiconductor photocatalyst materials to degrade pollutants for addressing environmental pollution problems has become a research focus in recent years. In this work, a 2D/2D S-scheme crystalline carbon nitride (CCN)/BiOIO3 (BOI) van der Waals heterojunction was successfully constructed for effectively enhancing the degradation efficiency of antibiotic contaminant. The as-synthesized optimal CCN/BOI-3 sample exhibited the highest efficiency of 80% for the photo-degradation of tetracycline (TC, 20 mg/L) after 120 min visible light irradiation, which was significantly higher than that of pure CCN and BOI. The significant improvement in photocatalytic performance is mainly attributed to two aspects: (i) the 2D/2D van der Waals heterojunction can accelerate interface carriers’ separation and transfer and afford sufficient active sites; (ii) the S-scheme heterojunction elevated the redox capacity of CCN/BOI, thus providing a driving force for the degradation reaction. The degradation pathways of TC for the CCN/BOI composite were investigated in detail by liquid chromatography-mass spectrometry (LC-MS) analysis. This work provides a design idea for the development of efficient photocatalysts based on the 2D/2D S-scheme van der Waals heterojunctions. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry and Photocatalysis)
Show Figures

Figure 1

Review

Jump to: Research

42 pages, 7719 KiB  
Review
Strategies for Improving Selectivity and Sensitivity of Schiff Base Fluorescent Chemosensors for Toxic and Heavy Metals
Molecules 2023, 28(19), 6960; https://doi.org/10.3390/molecules28196960 - 06 Oct 2023
Viewed by 735
Abstract
Toxic cations, including heavy metals, pose significant environmental and health risks, necessitating the development of reliable detection methods. This review investigates the techniques and approaches used to strengthen the sensitivity and selectivity of Schiff base fluorescent chemosensors designed specifically to detect toxic and [...] Read more.
Toxic cations, including heavy metals, pose significant environmental and health risks, necessitating the development of reliable detection methods. This review investigates the techniques and approaches used to strengthen the sensitivity and selectivity of Schiff base fluorescent chemosensors designed specifically to detect toxic and heavy metal cations. The paper explores a range of strategies, including functional group variations, structural modifications, and the integration of nanomaterials or auxiliary receptors, to amplify the efficiency of these chemosensors. By improving selectivity towards targeted cations and achieving heightened sensitivity and detection limits, consequently, these strategies contribute to the advancement of accurate and efficient detection methods while increasing the range of end-use applications. The findings discussed in this review offer valuable insights into the potential of leveraging Schiff base fluorescent chemosensors for the accurate and reliable detection and monitoring of heavy metal cations in various fields, including environmental monitoring, biomedical research, and industrial safety. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry and Photocatalysis)
Show Figures

Graphical abstract

28 pages, 7554 KiB  
Review
Photocatalytic Self-Fenton System of g-C3N4-Based for Degradation of Emerging Contaminants: A Review of Advances and Prospects
Molecules 2023, 28(15), 5916; https://doi.org/10.3390/molecules28155916 - 06 Aug 2023
Cited by 3 | Viewed by 1200
Abstract
The discharge of emerging pollutants in the industrial process poses a severe threat to the ecological environment and human health. Photocatalytic self-Fenton technology combines the advantages of photocatalysis and Fenton oxidation technology through the in situ generation of hydrogen peroxide (H2O [...] Read more.
The discharge of emerging pollutants in the industrial process poses a severe threat to the ecological environment and human health. Photocatalytic self-Fenton technology combines the advantages of photocatalysis and Fenton oxidation technology through the in situ generation of hydrogen peroxide (H2O2) and interaction with iron (Fe) ions to generate a large number of strong reactive oxygen species (ROS) to effectively degrade pollutants in the environment. Graphite carbon nitride (g-C3N4) is considered as the most potential photocatalytic oxygen reduction reaction (ORR) photocatalyst for H2O2 production due to its excellent chemical/thermal stability, unique electronic structure, easy manufacturing, and moderate band gap (2.70 eV). Hence, in this review, we briefly introduce the advantages of the photocatalytic self-Fenton and its degradation mechanisms. In addition, the modification strategy of the g-C3N4-based photocatalytic self-Fenton system and related applications in environmental remediation are fully discussed and summarized in detail. Finally, the prospects and challenges of the g-C3N4-based photocatalytic self-Fenton system are discussed. We believe that this review can promote the construction of novel and efficient photocatalytic self-Fenton systems as well as further application in environmental remediation and other research fields. Full article
(This article belongs to the Special Issue Feature Papers in Photochemistry and Photocatalysis)
Show Figures

Figure 1

Back to TopTop