
Citation: Lv, X.; Yuan, H.; Sun, K.; Shi,

W.; Li, C.; Guo, F. Construction of a

Visible-Light-Response

Photocatalysis–Self-Fenton

Degradation System of Coupling

Industrial Waste Red Mud to

Resorcinol–Formaldehyde Resin.

Molecules 2024, 29, 1514. https://

doi.org/10.3390/molecules29071514

Academic Editors: Hai-yang Liu and

Barbara Bonelli

Received: 23 February 2024

Revised: 22 March 2024

Accepted: 25 March 2024

Published: 28 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Construction of a Visible-Light-Response
Photocatalysis–Self-Fenton Degradation System of Coupling
Industrial Waste Red Mud to Resorcinol–Formaldehyde Resin
Xiangxiu Lv 1,†, Hao Yuan 1,†, Kaiqu Sun 1, Weilong Shi 1,* , Chunsheng Li 2,* and Feng Guo 3,*

1 School of Material Science and Engineering, Jiangsu University of Science and Technology,
Zhenjiang 212100, China

2 Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry
of China, School of Chemistry and Life Sciences, Suzhou University of Science and Technology,
Suzhou 215009, China

3 School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China
* Correspondence: shiwl@just.edu.cn (W.S.); lichsheng@163.com (C.L.); gfeng0105@126.com (F.G.)
† These authors contributed equally to this work.

Abstract: Heterogeneous photocatalysis–self-Fenton technology is a sustainable strategy for treating
organic pollutants in actual water bodies with high-fluent degradation and high mineralization
capacity, overcoming the limitations of the safety risks caused by adding external iron sources and
hazardous chemicals in the homogeneous Fenton reaction and injecting high-intensity energy fields
in photo-Fenton reaction. Herein, a photo-self-Fenton system based on resorcinol–formaldehyde
(RF) resin and red mud (RM) was established to generate hydrogen peroxide (H2O2) in situ and
transform into hydroxy radical (•OH) for efficient degradation of tetracycline (TC) under visible light
irradiation. The capturing experiments and electron spin resonance (ESR) confirmed that the hinge
for the enhanced performance of this system is the superior H2O2 yield (499 µM) through the oxygen
reduction process (ORR) of the two-step single-electron over the resin and the high concentration of
•OH due to activation effect of RM. In addition, the Fe2+/Fe3+ cycles are accelerated by photoelectrons
to effectively initiate the photo-self-Fenton reaction. Finally, the possible degradation pathways were
proposed via liquid chromatography-mass spectrometry (LC-MS). This study provides a new idea
for environmental recovery in a waste-based heterogeneous photocatalytic self-Fenton system.

Keywords: photocatalysis–self-Fenton; in situ H2O2 production; red mud; antibiotic degradation;
resorcinol–formaldehyde

1. Introduction

The abuse of antibiotics (e.g., tetracycline) and the stability of their molecular struc-
tures lead to their usual detection in natural aquatic systems and causing ecotoxicological
effects that have brought many adverse effects to the ecological environment, human
health, microbial growth, etc. [1–3]. In order to solve the pollution problem of antibiotic
wastewater, biological treatment, chemical oxidation, and physical adsorption meth-
ods are proposed, but they suffer from high energy consumption, high cost, complex
operation, or secondary pollution [4–7]. Recently, as advanced oxidation processes
(AOPs), the rapid expansion of Fe in a 2+ oxidation state (Fe2+) and the hydroxyl rad-
ical (•OH)-based Fenton oxidation method, since •OH expresses high redox potential
(+2.80 V vs. SHE), for organic matter decomposition [8–10] have been broadly applied in
antibiotic wastewater treatment. Unfortunately, the conventional homogeneous Fenton
method suffers from poor tolerance of pH, high difficulty in separating iron species
from water and weak Fe2+ regeneration [11]. Furthermore, the continuous addition
of consumable hazardous chemical oxidants (hydrogen peroxide, H2O2) significantly

Molecules 2024, 29, 1514. https://doi.org/10.3390/molecules29071514 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29071514
https://doi.org/10.3390/molecules29071514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-4762-5599
https://doi.org/10.3390/molecules29071514
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29071514?type=check_update&version=2


Molecules 2024, 29, 1514 2 of 14

increases expenses and security risks during the process of production and transport,
which seriously restricts its actual application in treatment of pollutant wastewater [12].
Accordingly, it is urgent to seek a sustainable method for overcoming the shortcomings
of the homogeneous Fenton technique and improving its efficiency without any extra
addition of H2O2.

Photo-driven heterogeneous photocatalysis–self-Fenton technology offers tremen-
dous superiorities in terms of economic efficiency, environmental compatibility, secu-
rity, and pH survivability in contrast to the conventional homogeneous Fenton pro-
cess [13]. In this route, H2O2 can be synthesized in situ through the semiconductor
photocatalysis without the need for external additions, effectively circumventing the
risks associated with H2O2 storage and transport. Photocatalytic H2O2 production is
generally considered a green and sustainable model owing to the boundless supply of
solar energy [14,15]. Furthermore, H2O2 formed spontaneously would be activated by
Fe2+ ions to produce •OH (Fe2+ + H2O2 → Fe3+ + •OH + OH−, k = 40–80 L·mol−1 s−1);
the produced Fe3+ was further reduced by photo-generated electrons, which leads to
the continuous Fenton effect due to the effective acceleration of Fe2+/Fe3+ that rec-
ognized rate-limiting step in the Fenton reaction (Fe3+ + H2O2 → Fe2+ + •OOH + H+,
k = 0.001–0.01 L·mol−1 s−1) [16,17]. In addition, the homogeneous Fenton system is
limited by a narrow pH range (pH ≤ 3), and the liquid Fe-based activators are hardly
separated and removed from the water body, causing secondary pollution of the puri-
fied water quality, which results in additional costs owing to the treatment of Fe mud
pollution [18]. By comparison, heterogeneous photocatalysis–self-Fenton technology
perfectly overcomes the shortcomings of pH tolerance, secondary pollution, and activa-
tor recycling, meeting the theoretical support for the practical application of real-time
wastewater treatment in actual dynamic flow systems (Scheme 1) [19]. Accordingly, it is
essential to explore a high-performance photocatalyst capable of generating H2O2 and a
suitable Fe-based activator to construct a heterogeneous system due to the fundamental
impact endowed by the production and activation of H2O2.

Molecules 2024, 29, 1514 2 of 14 
 

 

regeneration [11]. Furthermore, the continuous addition of consumable hazardous chem-
ical oxidants (hydrogen peroxide, H2O2) significantly increases expenses and security 
risks during the process of production and transport, which seriously restricts its actual 
application in treatment of pollutant wastewater [12]. Accordingly, it is urgent to seek a 
sustainable method for overcoming the shortcomings of the homogeneous Fenton tech-
nique and improving its efficiency without any extra addition of H2O2. 

Photo-driven heterogeneous photocatalysis–self-Fenton technology offers tremen-
dous superiorities in terms of economic efficiency, environmental compatibility, security, 
and pH survivability in contrast to the conventional homogeneous Fenton process [13]. In 
this route, H2O2 can be synthesized in situ through the semiconductor photocatalysis 
without the need for external additions, effectively circumventing the risks associated 
with H2O2 storage and transport. Photocatalytic H2O2 production is generally considered 
a green and sustainable model owing to the boundless supply of solar energy [14,15]. Fur-
thermore, H2O2 formed spontaneously would be activated by Fe2+ ions to produce •OH 
(Fe2+ + H2O2 → Fe3+ + ∙OH + OH−, k = 40–80 L∙mol−1 s−1); the produced Fe3+ was further 
reduced by photo-generated electrons, which leads to the continuous Fenton effect due to 
the effective acceleration of Fe2+/Fe3+ that recognized rate-limiting step in the Fenton reac-
tion (Fe3+ + H2O2 → Fe2+ + ∙OOH + H+, k = 0.001–0.01 L∙mol−1 s−1) [16,17]. In addition, the 
homogeneous Fenton system is limited by a narrow pH range (pH ≤ 3), and the liquid Fe-
based activators are hardly separated and removed from the water body, causing second-
ary pollution of the purified water quality, which results in additional costs owing to the 
treatment of Fe mud pollution [18]. By comparison, heterogeneous photocatalysis–self-
Fenton technology perfectly overcomes the shortcomings of pH tolerance, secondary pol-
lution, and activator recycling, meeting the theoretical support for the practical applica-
tion of real-time wastewater treatment in actual dynamic flow systems (Scheme 1) [19]. 
Accordingly, it is essential to explore a high-performance photocatalyst capable of gener-
ating H2O2 and a suitable Fe-based activator to construct a heterogeneous system due to 
the fundamental impact endowed by the production and activation of H2O2. 

 
Scheme 1. Antibiotic wastewater treatment via the photo-self-Fenton purification system. 

In this work, a heterogeneous photocatalysis–self-Fenton system was constructed by 
employing resorcinol–formaldehyde (RF) resin as photocatalyst and industrial waste red 
mud (RM) as activator. Resorcinol–formaldehyde resin, as a metal-free polymer photo-
catalyst, shares an absorption wavelength up to 700 nm and solar–chemical conversion 
efficiency of 0.5% due to a narrow band gap (2.0 eV), thus stably and effectively driving 
the photocatalytic in situ production of H2O2 from water [20]. Moreover, RM is a kind of 
solid iron source from industrial wastes [21], and introducing the cheap iron source as a 
key to initiate the self-Fenton process not only achieves the separation of iron ions from 
water, but also reduces the industrial cost and controls the environmental pollution due 
to industrial production, thus achieving the effect of killing three birds with one stone. 
Electron spin resonance (ESR) and liquid chromatography-mass spectrometry (LC-MS) 

Scheme 1. Antibiotic wastewater treatment via the photo-self-Fenton purification system.

In this work, a heterogeneous photocatalysis–self-Fenton system was constructed
by employing resorcinol–formaldehyde (RF) resin as photocatalyst and industrial waste
red mud (RM) as activator. Resorcinol–formaldehyde resin, as a metal-free polymer pho-
tocatalyst, shares an absorption wavelength up to 700 nm and solar–chemical conversion
efficiency of 0.5% due to a narrow band gap (2.0 eV), thus stably and effectively driving
the photocatalytic in situ production of H2O2 from water [20]. Moreover, RM is a kind
of solid iron source from industrial wastes [21], and introducing the cheap iron source
as a key to initiate the self-Fenton process not only achieves the separation of iron ions
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from water, but also reduces the industrial cost and controls the environmental pollution
due to industrial production, thus achieving the effect of killing three birds with one
stone. Electron spin resonance (ESR) and liquid chromatography-mass spectrometry
(LC-MS) were conducted to further discuss the mechanism and the intermediates for the
RF-based photo-self-Fenton system in detail. This work presents an in-depth insight for
designing a sustainable and economical heterogeneous self-Fenton system.

2. Results and Discussion

As can be seen in Figure 1a, a heterogeneous photo-self-Fenton degradation system
was structured with RF as H2O2 production photocatalyst and RM as iron source and
H2O2 activating agent to purify the antibiotic wastewater. The crystal structure and
crystallographic properties of RF and RM were characterized by X-ray diffraction (XRD)
analysis, as exhibited in Figure 1b. For the RF sample, an extensive diffraction peak was
observed around 2θ = 20◦ (d = 4.4 Å), which can be attributed to the (002) crystal plane
of graphite carbon, confirming the presence of the π-stacked aromatics [22]. RM is a kind
of industrial waste material rich in Fe2O3 and Al2O3, produced during the process of
preparing aluminum in aluminum plants, which is obtained using Bayer’s method [23].
The exact chemical composition was analyzed by X-ray fluorescence (XRF) (as provided
in Table S1), which indicated that the main components of the RM were largely metal
oxides, silicate, and a small number of other impurities, and among them, the contents of
Fe2O3 and Al2O3 account to 49.81% and 24.18%, respectively. As presented in the XRD
profile of RM, the 2θ values of 24.1, 33.1, 35.7, 41.0, 49.5, 54.1, 62.6, and 64.1◦ agree with
the standard card of Fe2O3 (JCPDS: 79-1741), corresponding to the (012), (104), (110), (006),
(113), and (202) crystal planes [24], which indicates Fe2O3 is the main component of the
RM, which is consistent with the XRF results. Significantly, no XRD diffraction peaks of
other metal oxides (i.e., Al2O3 and TiO2) were detected in the RM due to the amorphous
state, low concentration, and high dispersion of these metal oxides [25]. In the Fourier
transform infrared (FT-IR) spectra in Figure 1c, the RF resins displayed individual bands
stemming from resorcinols, linkers, and residual groups, which fully confirmed the precise
synthesis of RF [26]. The broad peak at 2900~3300 cm−1 is the stretching vibration of
resorcinol, and the peak at 1650 cm−1 belongs to the stretching vibration mode of C=O,
which is due to hydrothermal treatment at high temperature, which can produce quinoid
groups [27]. Simultaneously, the sharp peaks at 1618 and 1400 cm−1 are caused by the C=C
vibrations of the aromatic ring and the C-H vibration of the methylene linker, while the
broad peak in the region of 1100~1300 cm−1 is attributed to the C-O vibration of resorcinol
and methylol [28]. Similarly, it was observed that the broad peak at 2900~3300 cm−1 is the
stretching vibration of the O-H bond, while the strong peak at 971 cm−1 is the characteristic
vibration of the Fe-O bond, which is attributed to the presence of Fe2O3; the broad peak
in the range of 500 to 750 cm−1 is the telescopic vibration peak of the Si-O bond, which
was clearly displayed in the FT-IR spectra of RM [29]. Scanning electron microscopy (SEM)
was employed to visualize the microstructure of RF and RM, as exhibited in Figure 1d,e.
The morphology of the RF expressed regular spherical shapes with a diameter of about
500 nm, with negligible inhomogeneous spherical particles on the sphere, which may be
attributed to incomplete polymerization resulting from small differences in the temperature
during the high-temperature hydrothermal process [30]. In addition, the RM was a mixture
including metal oxides and silicates, with its morphology presenting irregularly sized
lumps and granules which were loosely arranged and shared large cracks and bifurcated
structures on the surface [31]. The corresponding energy dispersion X-ray spectrum (EDS,
Figure 1e) and element mapping images (Figures S1 and S2) of RM and RF suggest that the
RF was mainly composed of C and O elements, while the RM possessed O elements and
abundant Fe elements, which can provide cheap iron sources to create the conditions for
the photo-self-Fenton system.
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The degradation performance of the heterogeneous RM/RF photo-self-Fenton system
was estimated via tetracycline (TC) degradation under visible light (λ > 400 nm) illumina-
tion. The concentration of Fe species is one of the prerequisites for turning on the Fenton
reaction [32], so the effect of different amounts of RM on the TC degradation performance
of RF-based photo-self-Fenton system was explored (Figure 2a). As shown in Figure S3, the
adsorption equilibrium was reached by adsorption after 30 min in the dark, excluding the
interference of adsorption to the catalytic reaction. It is clearly observed that the degrada-
tion performance was improved significantly with the addition of RM, and the degradation
performance reached the optimum and the degradation rate reached 53.2% with the ad-
dition of 7 mg of RM, which was due to the efficient utilization of H2O2 promoted by the
activation by RM. Nevertheless, the employ of excess iron source would similarly inhibit
the degradation of TC, as the excess RM could agglomerate, thereby blocking the light
absorption of RF during stirring [33,34]. Furthermore, the corresponding pseudo-first order
kinetic curves are displayed in Figure 2b; regarding the fitted degradation, the apparent
reaction rate constants of k (min−1) are given in Table S2. Similarly, the kinetic reaction rate
of the photo-self-Fenton degradation system with the addition of 7 mg of RM achieved
a distinct increase of about 3.03 times compared to that of the pure RF photocatalytic
system, which was consistent with the above results. Notably, it was crucial to determine
whether the improved degradation performance stemmed from the material’s photocat-
alytic properties or whether it was acting as an H2O2 activator of RM in the self-Fenton
system, since RM is a collection of various semiconductor materials. As provided in Figure
S4, the TC degradation performance of RM with/without adding RF was compared under
the photo-reaction conditions, and it was discovered that the increase of the photocatalytic
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degradation rate of pure RM was much less than that of the photocatalytic self-Fenton
system after the addition of 20 mg RF with the increase of RM, which can fully confirm the
role of RM as photocatalysts and H2O2 activators in the photocatalytic self-Fenton system.
Meanwhile, the TC degradation performance was contrasted with common Fenton, photo-
Fenton and photo-self-Fenton systems, as shown in Figure 2c, and it was concluded that
the photo-self-Fenton system possessed the best degradation efficiency of TC under visible
light irradiation, which is 1.52 and 6.11 times that of Fenton and photo-Fenton systems,
respectively. Compared with the Fenton reaction, the cause of the enhanced performance
of the self-Fenton reaction is the faster valence state circulation of iron ions to further
affect the rate of hydroxy radical (•OH) formation of the major degradative active species
(Figure 2d) [35], which is ascribed to the following reasons: (i) compared with ordinary
Fenton systems, photo-self-Fenton systems employ semiconductor materials as the catalyst,
which are excited by the external light source to produce photo-induced electrons, and
thus quickly realize the valence state transition to activate H2O2 to produce •OH [36];
(ii) simultaneously, electrons participate in the formation of H2O2 intermediates and pro-
vide raw materials for iron ion conversion [37]; (iii) in contrast, although both use the
assistance of photocatalysis, the in situ generation of H2O2 in self-Fenton system increases
the H2O2 content in the fixed environment, thus facilitating the valence cycle and H2O2
activation to produce highly oxidized •OH, compared with photo-Fenton systems.
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500 µM). (d) Simple mechanism diagram in photo-self-Fenton and Fenton systems.

From the analysis of the above results, the RF-based photo-self-Fenton system pos-
sessed a strong degradation performance, which stemmed from the synergy of photocatal-
ysis and the Fenton method, so as to effectively generate and utilize H2O2, effectively
promoting the separation of photo-induced carriers and effective conversion to •OH [38,39].
RF is a metal-free semiconductor with a suitable band structure (Figure S5) and is en-
dowed with a strong ability to produce H2O2 [40]. Consequently, the H2O2 production
performance of the photo-self-Fenton system supplemented with different contents of
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RM was evaluated. As seen in Figure 3a, the production of H2O2 from RF was up to
499 µM within 2 h of visible light irradiation, based the standard curves for photocatalytic
H2O2 production (Figure S6), and gradually decreased with the addition of RM due to the
activation of H2O2 by RM. Generally, the formation of H2O2 follows two routes with two
involved electrons: the water oxidation reaction (WOR) and the oxygen reduction reaction
(ORR) [41]. Different from the WOR process of direct two electrons in one step, the process
of ORR can be divided into one-step two-electron (O2 + 2e− + 2H+ → H2O2) process and
the two-step single-electron (O2 + e− → •O2

−, •O2
− + e− + 2H+ → H2O2) process [42].

Therefore, the formation of H2O2 was deeply explored via changing the testing conditions,
and the results are provided in Figure 3b. First, the H2O2 production of an as-prepared
sample was tested under an N2 atmosphere, and it was discovered that only trace amounts
of H2O2 were produced in the system with the discharge of O2, which directly excluded the
function of WOR reaction and indicated that the H2O2 in the photo-self-Fenton system was
derived from the ORR pathway. Afterwards, the production of H2O2 dropped sharply after
superoxide radicals (•O2

−) were captured by vitamin C (VC), indicating that a two-step
single-electron ORR involving a radical intermediate remained to generate H2O2 in the
system. As exhibited in Figure 3c, electron spin resonance (ESR) spectra were measured to
detect •O2

− with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) during the photo-self-Fenton
degradation of TC. There was no obvious characteristic signal of DMPO-•O2

− under dark-
ness, while the signals of DMPO-•O2

− could be surveyed after 10 min of visible light
irradiation and gradually became stronger within 50 min, revealing that the production
of •O2

− was continuous and stable, which favored the generation of H2O2 by reacting
with electrons and was further activated by RM to produce •OH in the self-Fenton system.
Similarly, the ESR signals of •OH were also carried out (Figure 3d), and the signal intensity
of DMPO-•OH gradually became more significant, which fully established that •OH are
generated by H2O2 activation and are positively correlated with H2O2 production in the
presence of an adequate iron source. The concentration of •OH in the Fenton, photo-Fenton
and photo-self-Fenton systems was further monitored by detecting the PL signal inten-
sity of 7-hydroxycoumarin (Figure S7), where coumarin was used as a trapping agent for
•OH because of the blue fluorescence of 7-hydroxycoumarin generated by the •OH and
coumarin reaction [43]. As exhibited in Figure 3e, after 2 h of reaction, the accumulated
•OH concentration was approximately 28 µM in the Fenton system, while the concentration
of •OH reached 113.3 µM within 40 min, which did not significantly increase over time in
the photo-Fenton system. Impressively, •OH could be continuously and steadily generated
in the photocatalytic–Fenton system; thus the •OH concentration reached 171.5 µM and
maintained a sustained uptrend over 2 h of reaction time. In addition, the utilization
efficiencies of H2O2 (•OH transformation efficiencies) of different systems were calculated,
and the related results were provided in Figure 3f. The •OH transformation efficiency of
the photo-self-Fenton reached 34.3%, approximately 1.52 and 6.13 times compared with
that of the photo-Fenton and Fenton system, respectively, which may be intrinsic to the
higher degradation efficiency of the photo-self-Fenton system [44,45]. Apparently, the
degradation efficiency of the photo-self-Fenton system based on RF originated from the
in situ efficient production and superior utilization efficiency of H2O2. Fe2+ is the key
to turning on Fenton-like reactions, due to its function in activating H2O2 to •OH. As
revealed in Figure 3g,h, X-ray photoelectron spectroscopy (XPS) of RM before and after
the degradation reaction was performed. Compared with the Fe3+/Fe2+ ratio before the
reaction (1.45), the value decreased to 0.88 after the reaction, confirming the reduction of
Fe3+ to Fe2+ during the self-Fenton degradation reaction [46]. Moreover, the RF maintained
stable degradation activity after 4 cycles (Figure 3i), and the crystal structure, chemical com-
position, optical properties (Figure S8) and micromorphology (Figure S9) of RF expressed
no change after 4 cycles of degradation reactions, which confirmed the high stability of the
RF photocatalytic material and the degradation of the RF-based photo-self-Fenton system.
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Figure 3. (a) Concentration of H2O2 produced by RF/RM photo-self-Fenton systems with differ-
ent amounts of RM under visible light irradiation. (b) H2O2 production of RF under controlled
experimental conditions. (c) ESR spectra of (c) DMPO-•O2

− and (d) DMPO-•OH on RF/RM photo-
self-Fenton system under different irradiation time. (e) Variation curves of •OH radial concentration
and (f) utilization efficiency comparison of H2O2 over Fenton, photo-Fenton, and photo-self-Fenton
systems. (g) High-resolution XPS spectra of Fe 2p and (h) the corresponding proportion of Fe for
the RM before and after photocatalysis–self-Fenton degradation reaction. (i) Reusability of RF/RM
photo-self-Fenton system.

In general, the photocatalytic degradation performance relies on the varieties and
amount of active free radicals available during the degradation process, such as •O2

−,
•OH, singlet oxygen (1O2), and holes (h+) [47]. To further comprehend the mechanism
of the TC degradation process, the free radical capturing experiments were carried out
on the degradation system via adding vitamin C (VC), tert-butanol (TBA), L-tryptophan
(LTP), and potassium iodide (KI) as capture •O2

−, •OH, 1O2, and h+. As exhibited in
Figures 4a and S10, the final degradation rates of TC were effectively suppressed by 12.85%
and 41.54% after the addition of VC and TBA, respectively, which indicates that •O2

− and
•OH are the main active free radicals in the RF/RM photo-self-Fenton system. Unlike the
strong oxidation function of •OH, •O2

− acts as an intermediate of H2O2 and suppresses
the degradation efficiency by inhibiting H2O2 production. The degradation rate decreased
slightly after the introduction of LTP, indicating that 1O2 is not the main reactive oxygen
species (ROS) during the photo-Fenton process. Contrarily, the degradation efficiency,
which increased significantly with h+, was captured by KI, indicating that the h+ plays a
role in inhibiting degradation in this photo-self-Fenton system, rather than participating
in the ring-opening reaction of TC as an oxide species to enhance the degradation effect,
which could be due to the obstruction of the valence transition of iron and the inhibition
of H2O2 generation and transformation related to recombination of photo-generated car-
riers [48]. As a supplement to the free radical capturing experiments, ESR spectra have
been measured to detect the •O2

−, •OH, h+, •O2H, and 1O2 with 5,5-dimethyl-1-pyrroline
N-oxide (DMPO) and 2,2,6,6-tetramethyl-4-piperidine (TEMP) in this system [49], which
are provided in Figures 3c,d and 4b–d. Uniformly, there was no characteristic signal of
DMPO-•OH, DMPO-•O2

−, TEMP-1O2, or DMPO-•O2H in darkness, while after 20 min of
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visible irradiation, strong signals from DMPO-•OH, DMPO-•O2
−, TEMP-1O2, and DMPO-

•O2H could be observed, confirming the presence of •OH,•O2
−, 1O2, and •O2H during

the photo-self-Fenton degradation process of the RF-based heterogeneous system. The
appearance of •O2H confirms that the reduction of Fe3+is not only involved in obtaining
electrons (e− + Fe3+ → Fe2+), but also in the reduction reaction in H2O2 decomposition
(Fe3+ + H2O2 → Fe2+ + •O2H + H+, k = 0.001–0.01 L·mol−1 s−1), although this reaction is
difficult and often ignored, owing to the slowness of the kinetic reaction. For the ESR spec-
tra of h+, it was clearly observed that the signal of h+ became weaker, thus illustrating the
recombination behavior of the electron-hole pairs within 20 min. Accordingly, the possible
reaction mechanism of the RF-based photo-self-Fenton degradation system can be deduced
(Figure 4e). The first occurrence was the photocatalytic process that RF photocatalysts
being excited to generate electron-hole pairs by visible light and further produce H2O2
via a two-step single-electron ORR (O2 + e− → •O2

−, •O2
− + e− + 2H+ → H2O2) with

the separated photo-electrons [50,51]. For the Fenton process, Fe3+ ions in the RM were
reduced to Fe2+ ions via reacting with photo-electrons, and the formation of •OH was
further realized via activating H2O2 to degrade antibiotic target (TC) as well as the valence
cycle of Fe ions (Fe2+ + H2O2 → Fe3+ + •OH + OH−). Nevertheless, the position of VB for
RF is more negative than the conversion potential between •OH and H2O (2.4 eV), thus
excluding the WOR path of •OH (OH− + h+ → •OH). The photo-self-Fenton system could
be operated continuously through the cyclic reaction of H2O2 with Fe2+.
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(d) TEMP-1O2 for RF/RM photo-self-Fenton system. (e) Possible degradation mechanism of RF/RM
photo-self-Fenton system.
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The major intermediates produced during the process of photocatalytic degrada-
tion for TC in RF/RM photo-self-Fenton system were further investigated via liquid
chromatography–mass spectrometry (LC-MS), and the homologous spectra are displayed
in Figure S11. The signals at 445 m/z are attributed to the TC molecular (C22H24N2O8)
gradually decreasing with the degradation process, and other signals, imputed to smaller
molecular compounds, were formed, indicating that TC was easily decomposed, catalyzed
by the RF/RM photo-self-Fenton system. As shown in previous studies [52], intermediates
are mainly produced through two modes: the loss or cleavage of specific functional groups
and ring-opening reactions. Three possible degradation pathways of TC are thus proposed
and exhibited in Figure 5. For pathway I, TC molecule breaks N–CH3 and C–NH2 at
the same time as it loses a water molecule, resulting in product 1 (P1, m/z = 394). P1 is
converted into P2 (m/z = 275) via ring opening reaction. Afterwards, P2 (m/z = 275) loses
its methyl group and undergoes a continuous open-ring reaction to generate P3 (m/z = 192)
and P10 (m/z = 149). For pathway II, P4 (m/z = 430) can be formed by losing a N-methyl
in TC molecular. Then, P10 (m/z =149) is formed via demethylation and the breakage of
the carbon–carbon single bond [53]. For pathway III, P5 (m/z = 428) can be formed by
•OH attack via dihydroxylation and N-demethylation, owing to the low energy of the N-C
bond. Then, the next degradation steps can be divided into two pathways. One is that
P6 (m/z = 300) and P10 (m/z = 149) are formed through dihydroxylation, demethylation
reaction, and benzene rings opening [54]. The other mode is consecutive dihydroxylation
and demethylation resulting in the production of the intermediates P7 (m/z = 384), P8
(m/z = 308), and P9 (m/z = 283). Then, smaller molecules with an m/z of 149 are produced
during the ring-opening reactions’ progress. Finally, biodegradable intermediates with
smaller molecules of P11 (m/z = 85) and P12 (m/z = 118) are generated through additional
reactions, including dihydroxylation, decarboxylation, and benzene ring-opening reac-
tions [55]. Ultimately, the 12 degradation intermediates of TC decomposition are detected
using LC-MS, and a part of above intermediate could be completely decomposed into CO2
and H2O by the collaborative efforts of active species [56,57].
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3. Experimental Section
3.1. Materials

Tetracycline (C22H24N2O8), resorcinol (C6H6O2, AR), formaldehyde solution (CH2O,
37 wt.%), and ammonium hydroxide solution (NH3•H2O, 28 wt.%~30 wt.%) were pur-
chased from Macklin Biochemical Co., Ltd. (Shanghai, China) Red mud (RM) powder
was obtained via Bayer’s method and provided by Chongqing Nanchuan District Pioneer
Alumina Co., Ltd. (Chongqing, China) Prior to use, RM powder was first dried in an oven
at 110 ◦C, and then the pretreated RM solid powder was screened by 175 mesh screens.

3.2. Preparation of Resorcinol–Formaldehyde (RF) Resin

The RF resin was prepared following the typical hydrothermal method reported
previously [58]. In brief, 792 mg of C6H6O2, 1080 µL CH2O solution, and 460 µL NH3•H2O
were added to 60 mL of deionized water, and a white colloidal suspension was obtained
by stirring at room temperature. Subsequently, the above as-prepared suspension was
transferred to a stainless-steel autoclave and heated at 250 ◦C for 24 h in an oven. After
cooling to room temperature, the resulting RF resin solids were thoroughly washed with
water and ethanol and further dried under vacuum at 60 ◦C for 12 h.

3.3. Photo-Self-Fenton Degradation Experiments

The photo-self-Fenton degradation efficiency of the organic contaminant (tetracycline
(TC)) was evaluated under visible light irradiation (λ > 400 nm) using the multi-channels
photoreactor (Pefectlight PCX-50C, Beijing Perfectlight Technology Co., Beijing, China).
First, 20 mg RF and RM with different masses (m = 0, 1, 3, 5, 7 and 9 mg) were poured
into quartz beakers containing 50 mL TC solution (20 mg/L) and stirred in darkness for
30 min to reach adsorption–desorption equilibrium. Subsequently, the overall system was
then irradiated under visible light for 120 min, and 3 mL of the suspension was extracted
and centrifuged at 20 min intervals and measured by UV-vis spectrophotometer at the
characteristic absorption peak at the wavelength of 350 nm.

In addition, corresponding characterizations, detailed experimental procedures for
photo-electrochemical tests, photocatalytic H2O2 production experiments, and the concen-
tration and variation efficiency of •OH radials and active free radical-capturing experiments
are provided in the Supplementary Materials.

4. Conclusions

In summary, an emerging heterogeneous photo-self-Fenton system, constructed with
RF resin as photocatalyst and RM industrial waste as activating agent of H2O2, was pro-
posed, which was supplied to treat antibiotic contamination in wastewater without the
requirement of consumable chemical oxidants or high levels of energy. Compared with
the photo-Fenton degradation performance of RM, the kinetic reaction rate of the optimal
photo-self-Fenton degradation system achieved a distinct increase by 3.03 times under
visible light irradiation. The photo-self-Fenton system in this paper possesses superior-
ities in at least three aspects: (i) inspired by the idea of turning waste into a treasure,
the industrial waste RM was employed as an additional iron source to activate H2O2 to
produce active species with strong oxidation, which theoretically triggers the enhanced
degradation properties of the Fenton system as well as control of environmental pollution
due to industrial production, killing two birds with one stone; (ii) in situ generation of
H2O2 relieves pressure on operability, safety and costs, and this spontaneous formation
of H2O2 is superior to exogenous H2O2, making the degradation of photo-self-Fenton
systems far more effective than that of Fenton and photo-Fenton reactions; (iii) the RF/RM
photo-self-Fenton system applies visible light as the energy injection source, avoiding the
introduction of high-intensity energy fields (e.g., UV/chlorine ultraviolet methods and elec-
trochemical methods) and achieves the sustainability of environmental governance. This
study provides sustainable design ideas for the development of waste-based heterogeneous
photocatalysis–self-Fenton for water environmental restoration.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29071514/s1. Figure S1 HAADF-SEM and elemental
mapping images of RF. Figure S2 HAADF-SEM and elemental mapping images of RM. Figure S3
(a) TC adsorption curves and (b) adsorption kinetic fitting plots of RF/RM system in dark condition.
Figure S4 Comparison of the TC degradation performance of RM with/without adding RF under the
photo-reaction condition. Figure S5 (a) UV-vis absorption spectrum and (b) Eg plot of (αhv)2 presented
by the Kubelka-Munk transformed reflectance diffuse spectrum of RF. (c) Mott-Schottky plots and
(d) Energy band structure diagram of RF. Figure S6 (a) UV-vis absorption spectra of H2O2 solutions
with different concentrations and (b) corresponding calibration curve for testing H2O2 production
at the absorption peak of 350 nm. Figure S7 (a) PL spectra of 7-hydroxycoumarin with different
concentrations and (b) corresponding calibration curve for testing 7-hydroxycoumarin concentrations.
Figure S8 (a) XRD patterns, (b) FT-IR and (c) UV-vis absorption spectra of used RF sample after
photocatalytic reaction. Figure S9 SEM image of used RF sample. Figure S10 Degradation rates of TC
by adding different radical scavengers. Figure S11 LC-MS spectra of possible intermediates by the
photocatalytic self-Fenton degradation process of TC over RF/RM photo-self-Fenton system. Table S1
Main chemical compositions of RM. Table S2 Kinetic constants for TC photo-self-Fenton degradation
of RF/RM system under visible light irradiation.
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