molecules-logo

Journal Browser

Journal Browser

25th Anniversary of Molecules—Recent Advances in Natural Products-2020

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (31 January 2021) | Viewed by 65050

Special Issue Editors


grade E-Mail Website
Guest Editor
Department of Odontostomatologic and Specialized Clinical Sciences, Sez-Biochimica, Faculty of Medicine, Università Politecnica delle Marche, Via Ranieri 65, 60100 Ancona, Italy
Interests: nutrition; periodontal diseases/periodontitis; oxidative stress; aging; mitochondrial function and diseases; berries (strawberry, blueberry, bilberry, cranberry, etc.); olive oil (dietary fats); honey, polyphenols; flavonoids; antioxidants, apoptosis
Special Issues, Collections and Topics in MDPI journals

grade E-Mail Website
Guest Editor
Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo, 32004 Ourense, Spain
Interests: agro-environmental; food chemistry; sustainable primary production; food quality and safety
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In 2020, we are celebrating the 25th anniversary of our journal Molecules.

To date, the journal has published more than 20,000 papers and the journal website attracts 115,000 monthly visits and more than 395,000 monthly page views. Most of this success has been achieved thanks to our readers, innumerable authors, anonymous peer reviewers, editors, and all the people working in some way for the journal who have joined efforts for years.

To mark this important milestone, I am proud and honored to announce that a Special Issue entitled “Recent Advances in Natural Products—2020” is being launched. This Special Issue will collect high quality review papers in natural products chemistry research fields. Together with Dr. Esra Capanoglu and Dr. Simal-Gandara, Co-Guest Editors of the Issue, we encourage all research groups covering various areas to contribute an up-to-date and comprehensive review, highlighting the latest development in natural products chemistry.

Prof. Dr. Maurizio Battino
Prof. Dr. Jesus Simal-Gandara
Prof. Dr. Esra Capanoglu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 1341 KiB  
Article
Antihyperglycemic and Lipid Profile Effects of Salvia amarissima Ortega on Streptozocin-Induced Type 2 Diabetic Mice
by Jesus Ivan Solares-Pascasio, Guillermo Ceballos, Fernando Calzada, Elizabeth Barbosa and Claudia Velazquez
Molecules 2021, 26(4), 947; https://doi.org/10.3390/molecules26040947 - 11 Feb 2021
Cited by 15 | Viewed by 2749
Abstract
Salvia amarissima Ortega was evaluated to determinate its antihyperglycemic and lipid profile properties. Petroleum ether extract of fresh aerial parts of S. amarissima (PEfAPSa) and a secondary fraction (F6Sa) were evaluated to determine their antihyperglycemic activity in streptozo-cin-induced diabetic (STID) mice, in oral [...] Read more.
Salvia amarissima Ortega was evaluated to determinate its antihyperglycemic and lipid profile properties. Petroleum ether extract of fresh aerial parts of S. amarissima (PEfAPSa) and a secondary fraction (F6Sa) were evaluated to determine their antihyperglycemic activity in streptozo-cin-induced diabetic (STID) mice, in oral tolerance tests of sucrose, starch, and glucose (OSTT, OStTT, and OGTT, respectively), in terms of glycated hemoglobin (HbA1c), triglycerides (TG), and high-density lipoprotein (HDL). In acute assays at doses of 50 mg/kg body weight (b.w.), PEfAPSa and F6Sa showed a reduction in hyperglycemia in STID mice, at the first and fifth hour after of treatment, respectively, and were comparable with acarbose. In the sub-chronic test, PEfAPSa and F6Sa showed a reduction of glycemia since the first week, and the effect was greater than that of the acarbose control group. In relation to HbA1c, the treatments prevented the increase in HbA1c. In the case of TG and HDL, PEfAPSa and F6Sa showed a reduction in TG and an HDL increase from the second week. OSTT and OStTT showed that PEfAPSa and F6Sa significantly lowered the postprandial peak at 1 h after loading but only in sucrose or starch such as acarbose. The results suggest that S. amarissima activity may be mediated by the inhibition of disaccharide hydrolysis, which may be associated with an α-glucosidase inhibitory effect. Full article
Show Figures

Figure 1

11 pages, 2412 KiB  
Communication
Involvement of miR-190b in Xbp1 mRNA Splicing upon Tocotrienol Treatment
by Roberto Ambra, Sonia Manca, Guido Leoni, Barbara Guantario, Raffaella Canali and Raffaella Comitato
Molecules 2021, 26(1), 163; https://doi.org/10.3390/molecules26010163 - 31 Dec 2020
Cited by 1 | Viewed by 2311
Abstract
We previously demonstrated that apoptosis induced by tocotrienols (γ and δT3) in HeLa cells is preceded by Ca2+ release from the endoplasmic reticulum. This event is eventually followed by the induction of specific calcium-dependent signals, leading to the expression and activation of [...] Read more.
We previously demonstrated that apoptosis induced by tocotrienols (γ and δT3) in HeLa cells is preceded by Ca2+ release from the endoplasmic reticulum. This event is eventually followed by the induction of specific calcium-dependent signals, leading to the expression and activation of the gene encoding for the IRE1α protein and, in turn, to the alternative splicing of the pro-apoptotic protein sXbp1 and other molecules involved in the unfolded protein response, the core pathway coping with EndoR stress. Here, we showed that treatment with T3s induces the expression of a specific set of miRNAs in HeLa cells. Data interrogation based on the intersection of this set of miRNAs with a set of genes previously differentially expressed after γT3 treatment provided a few miRNA candidates to be the effectors of EndoR-stress-induced apoptosis. To identify the best candidate to act as the effector of the Xbp1-mediated apoptotic response to γT3, we performed in silico analysis based on the evaluation of the highest ∆ in Gibbs energy of different mRNA–miRNA–Argonaute (AGO) protein complexes. The involvement of the best candidate identified in silico, miR-190b, in Xbp1 splicing was confirmed in vitro using T3-treated cells pre-incubated with the specific miRNA inhibitor, providing a preliminary indication of its role as an effector of EndoR-stress-induced apoptosis. Full article
Show Figures

Figure 1

13 pages, 2299 KiB  
Article
Biseugenol Exhibited Anti-Inflammatory and Anti-Asthmatic Effects in an Asthma Mouse Model of Mixed-Granulocytic Asthma
by Vitor Ponci, Rafael C. Silva, Fernanda Paula R. Santana, Simone S. Grecco, Célia Regina M. Fortunato, Maria A. Oliveira, Wothan Tavares-de-Lima, Clarice R. Olivo, Iolanda de Fátima L. Calvo Tibério, Kaio S. Gomes, Carla M. Prado and João Henrique G. Lago
Molecules 2020, 25(22), 5384; https://doi.org/10.3390/molecules25225384 - 18 Nov 2020
Cited by 2 | Viewed by 2630
Abstract
In the present work, the anti-inflammatory and antiasthmatic potential of biseugenol, isolated as the main component from n-hexane extract from leaves of Nectandra leucantha and chemically prepared using oxidative coupling from eugenol, was evaluated in an experimental model of mixed-granulocytic asthma. Initially, [...] Read more.
In the present work, the anti-inflammatory and antiasthmatic potential of biseugenol, isolated as the main component from n-hexane extract from leaves of Nectandra leucantha and chemically prepared using oxidative coupling from eugenol, was evaluated in an experimental model of mixed-granulocytic asthma. Initially, in silico studies of biseugenol showed good predictions for drug-likeness, with adherence to Lipinski’s rules of five (RO5), good Absorption, Distribution, Metabolism and Excretion (ADME) properties and no alerts for Pan-Assay Interference Compounds (PAINS), indicating adequate adherence to perform in vivo assays. Biseugenol (20 mg·kg−1) was thus administered intraperitoneally (four days of treatment) and resulted in a significant reduction in both eosinophils and neutrophils of bronchoalveolar lavage fluid in ovalbumin-sensitized mice with no statistical difference from dexamethasone (5 mg·kg−1). As for lung function parameters, biseugenol (20 mg·kg−1) significantly reduced airway and tissue damping in comparison to ovalbumin group, with similar efficacy to positive control dexamethasone. Airway hyperresponsiveness to intravenous methacholine was reduced with biseugenol but was inferior to dexamethasone in higher doses. In conclusion, biseugenol displayed antiasthmatic effects, as observed through the reduction of inflammation and airway hyperresponsiveness, with similar effects to dexamethasone, on mixed-granulocytic ovalbumin-sensitized mice. Full article
Show Figures

Graphical abstract

19 pages, 6609 KiB  
Article
Unravelling the Biological Activities of the Byttneria pilosa Leaves Using Experimental and Computational Approaches
by Mifta Ahmed Jyoti, Niloy Barua, Mohammad Shafaet Hossain, Muminul Hoque, Tahmina Akter Bristy, Shabnur Mahmud, Kamruzzaman, Md. Adnan, Md. Nazim Uddin Chy, Arkajyoti Paul, Mir Ezharul Hossain, Talha Bin Emran and Jesus Simal-Gandara
Molecules 2020, 25(20), 4737; https://doi.org/10.3390/molecules25204737 - 15 Oct 2020
Cited by 14 | Viewed by 3092
Abstract
Byttneria pilosa is locally known as Harijora, and used by the native hill-tract people of Bangladesh for the treatment of rheumatalgia, snake bite, syphilis, fractured bones, elephantiasis and an antidote for poisoning. The present study was carried out to determine the possible anti-inflammatory, [...] Read more.
Byttneria pilosa is locally known as Harijora, and used by the native hill-tract people of Bangladesh for the treatment of rheumatalgia, snake bite, syphilis, fractured bones, elephantiasis and an antidote for poisoning. The present study was carried out to determine the possible anti-inflammatory, analgesic, neuropharmacological and anti-diarrhoeal activity of the methanol extract of B. pilosa leaves (MEBPL) through in vitro, in vivo and in silico approaches. In the anti-inflammatory study, evaluated by membrane stabilizing and protein denaturation methods, MEBPL showed a significant and dose dependent inhibition. The analgesic effect of MEBPL tested by inducing acetic acid and formalin revealed significant inhibition of pain in both tests. During the anxiolytic evaluation, the extract exhibited a significant and dose-dependent reduction of anxiety-like behaviour in mice. Similarly, mice treated with MEBPL demonstrated dose-dependent reduction in locomotion effect in the open field test and increased sedative effect in the thiopental sodium induced sleeping test. MEBPL also showed good anti-diarrheal activity in both castor oil induced diarrheal and intestinal motility tests. Besides, a previously isolated compound (beta-sitosterol) exhibited good binding affinity in docking and drug-likeliness properties in ADME/T studies. Overall, B. pilosa is a biologically active plant and could be a potential source of drug leads, which warrants further advanced study. Full article
Show Figures

Figure 1

17 pages, 2548 KiB  
Article
Thymoquinone-Loaded Soluplus®-Solutol® HS15 Mixed Micelles: Preparation, In Vitro Characterization, and Effect on the SH-SY5Y Cell Migration
by Maria Camilla Bergonzi, Marzia Vasarri, Giulia Marroncini, Emanuela Barletta and Donatella Degl’Innocenti
Molecules 2020, 25(20), 4707; https://doi.org/10.3390/molecules25204707 - 14 Oct 2020
Cited by 21 | Viewed by 3781
Abstract
Thymoquinone (TQ) is the main active ingredient of Nigella sativa essential oil, with remarkable anti-neoplastic activities with anti-invasive and anti-migratory abilities on a variety of cancer cell lines. However, its poor water solubility, high instability in aqueous solution and pharmacokinetic drawbacks limits its [...] Read more.
Thymoquinone (TQ) is the main active ingredient of Nigella sativa essential oil, with remarkable anti-neoplastic activities with anti-invasive and anti-migratory abilities on a variety of cancer cell lines. However, its poor water solubility, high instability in aqueous solution and pharmacokinetic drawbacks limits its use in therapy. Soluplus® and Solutol® HS15 were employed as amphiphilic polymers for developing polymeric micelles (SSM). Chemical and physical characterization studies of micelles are reported, in terms of size, homogeneity, zeta potential, critical micelle concentration (CMC), cloud point, encapsulation efficiency (EE%), load capacity (DL), in vitro release, and stability. This study reports for the first time the anti-migratory activity of TQ and TQ loaded in SSM (TQ-SSM) in the SH-SY5Y human neuroblastoma cell line. The inhibitory effect was assessed by the wound-healing assay and compared with that of the unformulated TQ. The optimal TQ-SSM were provided with small size (56.71 ± 1.41 nm) and spherical shape at ratio of 1:4 (Soluplus:Solutol HS15), thus increasing the solubility of about 10-fold in water. The entrapment efficiency and drug loading were 92.4 ± 1.6% and 4.68 ± 0.12, respectively, and the colloidal dispersion are stable during storage for a period of 40 days. The TQ-SSM were also lyophilized to obtain a more workable product and with increased stability. In vitro release study indicated a prolonged release of TQ. In conclusion, the formulation of TQ into SSM allows a bio-enhancement of TQ anti-migration activity, suggesting that TQ-SSM is a better candidate than unformulated TQ to inhibit human SH-SY5Y neuroblastoma cell migration. Full article
Show Figures

Graphical abstract

18 pages, 4042 KiB  
Article
Verbascoside-Rich Abeliophyllum distichum Nakai Leaf Extracts Prevent LPS-Induced Preterm Birth Through Inhibiting the Expression of Proinflammatory Cytokines from Macrophages and the Cell Death of Trophoblasts Induced by TNF-α
by Ho Won Kim, A-Reum Yu, Minji Kang, Nak-Yun Sung, Byung Soo Lee, Sang-Yun Park, In-Jun Han, Dong-Sub Kim, Sang-Muk Oh, Young Ik Lee, Gunho Won, Sung Ki Lee and Jong-Seok Kim
Molecules 2020, 25(19), 4579; https://doi.org/10.3390/molecules25194579 - 07 Oct 2020
Cited by 5 | Viewed by 3311
Abstract
Background: Preterm birth is a known leading cause of neonatal mortality and morbidity. The underlying causes of pregnancy-associated complications are numerous, but infection and inflammation are the essential high-risk factors. However, there are no safe and effective preventive drugs that can be [...] Read more.
Background: Preterm birth is a known leading cause of neonatal mortality and morbidity. The underlying causes of pregnancy-associated complications are numerous, but infection and inflammation are the essential high-risk factors. However, there are no safe and effective preventive drugs that can be applied to pregnant women. Objective: The objectives of the study were to investigate a natural product, Abeliophyllum distichum leaf (ADL) extract, to examine the possibility of preventing preterm birth caused by inflammation. Methods: We used a mouse preterm birth model by intraperitoneally injecting lipopolysaccharides (LPS). ELISA, Western blot, real-time PCR and immunofluorescence staining analyses were performed to confirm the anti-inflammatory efficacy and related mechanisms of the ADL extracts. Cytotoxicity and cell death were measured using Cell Counting Kit-8 (CCK-8) analysis and flow cytometer. Results: A daily administration of ADL extract significantly reduced preterm birth, fetal loss, and fetal growth restriction after an intraperitoneal injection of LPS in mice. The ADL extract prevented the LPS-induced expression of TNF-α in maternal serum and amniotic fluid and attenuated the LPS-induced upregulation of placental proinflammatory genes, including IL-1β, IL-6, IL-12p40, and TNF-α and the chemokine gene CXCL-1, CCL-2, CCL3, and CCL-4. LPS-treated THP-1 cell-conditioned medium accelerated trophoblast cell death, and TNF-α played an essential role in this effect. The ADL extract reduced LPS-treated THP-1 cell-conditioned medium-induced trophoblast cell death by inhibiting MAPKs and the NF-κB pathway in macrophages. ADL extract prevented exogenous TNF-α-induced increased trophoblast cell death and decreased cell viability. Conclusions: We have demonstrated that the inhibition of LPS-induced inflammation by ADL extract can prevent preterm birth, fetal loss, and fetal growth restriction. Full article
Show Figures

Figure 1

20 pages, 1558 KiB  
Article
Streptomyces sp. Strain MUSC 125 from Mangrove Soil in Malaysia with Anti-MRSA, Anti-Biofilm and Antioxidant Activities
by Hefa Mangzira Kemung, Loh Teng-Hern Tan, Kok-Gan Chan, Hooi-Leng Ser, Jodi Woan-Fei Law, Learn-Han Lee and Bey-Hing Goh
Molecules 2020, 25(15), 3545; https://doi.org/10.3390/molecules25153545 - 03 Aug 2020
Cited by 32 | Viewed by 5650
Abstract
There is an urgent need to search for new antibiotics to counter the growing number of antibiotic-resistant bacterial strains, one of which is methicillin-resistant Staphylococcus aureus (MRSA). Herein, we report a Streptomyces sp. strain MUSC 125 from mangrove soil in Malaysia which was [...] Read more.
There is an urgent need to search for new antibiotics to counter the growing number of antibiotic-resistant bacterial strains, one of which is methicillin-resistant Staphylococcus aureus (MRSA). Herein, we report a Streptomyces sp. strain MUSC 125 from mangrove soil in Malaysia which was identified using 16S rRNA phylogenetic and phenotypic analysis. The methanolic extract of strain MUSC 125 showed anti-MRSA, anti-biofilm and antioxidant activities. Strain MUSC 125 was further screened for the presence of secondary metabolite biosynthetic genes. Our results indicated that both polyketide synthase (pks) gene clusters, pksI and pksII, were detected in strain MUSC 125 by PCR amplification. In addition, gas chromatography-mass spectroscopy (GC-MS) detected the presence of different chemicals in the methanolic extract. Based on the GC-MS analysis, eight known compounds were detected suggesting their contribution towards the anti-MRSA and anti-biofilm activities observed. Overall, the study bolsters the potential of strain MUSC 125 as a promising source of anti-MRSA and antibiofilm compounds and warrants further investigation. Full article
Show Figures

Figure 1

14 pages, 1248 KiB  
Article
Anti-Proliferative, Analgesic and Anti-Inflammatory Properties of Syzygium mundagam Bark Methanol Extract
by Rahul Chandran, Blassan P. George and Heidi Abrahamse
Molecules 2020, 25(12), 2900; https://doi.org/10.3390/molecules25122900 - 24 Jun 2020
Cited by 8 | Viewed by 2903
Abstract
Cancer, pain and inflammation have long been a cause for concern amongst patients, clinicians and research scientists. There is an alarming increase in the demand for medicines suppressing these disease conditions. The present study investigates the role of Syzygium mundagam bark methanol (SMBM) [...] Read more.
Cancer, pain and inflammation have long been a cause for concern amongst patients, clinicians and research scientists. There is an alarming increase in the demand for medicines suppressing these disease conditions. The present study investigates the role of Syzygium mundagam bark methanol (SMBM) extract against MCF-7 breast cancer cells, pain and inflammation. The MCF-7 cells treated with SMBM were analyzed for adenosine triphosphate (ATP), lactate dehydrogenase (LDH) levels, changes in cell morphology and nuclear damage. Hot plate, acetic acid and formalin-induced pain models were followed to determine the analgesic activity. Anti-inflammatory activity was studied using carrageenan, egg albumin and cotton pellet induced rat models. Microscopic images of cells in SMBM treated groups showed prominent cell shrinkage and nuclear damage. Hoechst stain results supported the cell death morphology. The decline in ATP (47.96%) and increased LDH (40.96%) content indicated SMBM induced toxicity in MCF-7 cells. In the in vivo study, a higher dose (200 mg/kg) of the extract was found to be effective in reducing pain and inflammation. The results are promising and the action of the extract on MCF-7 cells, pain and inflammation models indicate the potential of drugs of natural origin to improve current therapies. Full article
Show Figures

Graphical abstract

23 pages, 6218 KiB  
Article
Role of Rutin in 5-Fluorouracil-Induced Intestinal Mucositis: Prevention of Histological Damage and Reduction of Inflammation and Oxidative Stress
by Lázaro de Sousa Fideles, João Antônio Leal de Miranda, Conceição da Silva Martins, Maria Lucianny Lima Barbosa, Helder Bindá Pimenta, Paulo Vitor de Souza Pimentel, Claudio Silva Teixeira, Marina Alves Sampaio Scafuri, Samuel de Osterno Façanha, João Erivan Façanha Barreto, Poliana Moreira de Medeiros Carvalho, Ariel Gustavo Scafuri, Joabe Lima Araújo, Jefferson Almeida Rocha, Icaro Gusmão Pinto Vieira, Nágila Maria Pontes Silva Ricardo, Matheus da Silva Campelo, Maria Elenir Nobre Pinho Ribeiro, Gerly Anne de Castro Brito and Gilberto Santos Cerqueira
Molecules 2020, 25(12), 2786; https://doi.org/10.3390/molecules25122786 - 17 Jun 2020
Cited by 33 | Viewed by 5723
Abstract
Intestinal mucositis, characterized by inflammatory and/or ulcerative processes in the gastrointestinal tract, occurs due to cellular and tissue damage following treatment with 5-fluorouracil (5-FU). Rutin (RUT), a natural flavonoid extracted from Dimorphandra gardneriana, exhibits antioxidant, anti-inflammatory, cytoprotective, and gastroprotective properties. However, the [...] Read more.
Intestinal mucositis, characterized by inflammatory and/or ulcerative processes in the gastrointestinal tract, occurs due to cellular and tissue damage following treatment with 5-fluorouracil (5-FU). Rutin (RUT), a natural flavonoid extracted from Dimorphandra gardneriana, exhibits antioxidant, anti-inflammatory, cytoprotective, and gastroprotective properties. However, the effect of RUT on inflammatory processes in the intestine, especially on mucositis promoted by antineoplastic agents, has not yet been reported. In this study, we investigated the role of RUT on 5-FU-induced experimental intestinal mucositis. Swiss mice were randomly divided into seven groups: Saline, 5-FU, RUT-50, RUT-100, RUT-200, Celecoxib (CLX), and CLX + RUT-200 groups. The mice were weighed daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis); malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH) concentrations; mast and goblet cell counts; and cyclooxygenase-2 (COX-2) activity, as well as to perform immunohistochemical analyses. RUT treatment (200 mg/kg) prevented 5-FU-induced histopathological changes and reduced oxidative stress by decreasing MDA concentrations and increasing GSH concentrations. RUT attenuated the inflammatory response by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. These results suggest that the COX-2 pathway is one of the underlying protective mechanisms of RUT against 5-FU-induced intestinal mucositis. Full article
Show Figures

Figure 1

14 pages, 1316 KiB  
Article
The Role of Extracting Solvents in the Recovery of Polyphenols from Green Tea and Its Antiradical Activity Supported by Principal Component Analysis
by Wojciech Koch, Wirginia Kukuła-Koch, Marcin Czop, Paweł Helon and Ewelina Gumbarewicz
Molecules 2020, 25(9), 2173; https://doi.org/10.3390/molecules25092173 - 06 May 2020
Cited by 23 | Viewed by 3305
Abstract
Green tea contains a variety of biologically active constituents that are widely used in the pharmaceutical and food industries. Among them, simple catechins constitute a major group of compounds that is primarily responsible for the high biologic activity of green tea extracts. Therefore, [...] Read more.
Green tea contains a variety of biologically active constituents that are widely used in the pharmaceutical and food industries. Among them, simple catechins constitute a major group of compounds that is primarily responsible for the high biologic activity of green tea extracts. Therefore, the application of optimized extraction conditions may result in obtaining high value extracts. The main purpose of the study was to compare the content of polyphenols, mainly catechins, and the antioxidant activity of green tea extracts obtained by three different extraction methods: simple maceration, ultrasound extraction and accelerated solvent extraction using six various solvent systems. The quality of the extracts was evaluated by LC-ESI-Q-TOF-MS methodologies and spectrophotometric determinations. The obtained results revealed that catechins’ extraction efficiency was identical for the three techniques studied. However, larger quantitative differences among the samples were observed when using different solvents. The total content of major catechins and gallic acid was within a very wide range of 10.2–842 mg/L. Ethyl acetate was by far the least effective extractant, regardless of the extraction technique used. After all, the solvent system composed of ethanol:water (1:1 v/v) was proven to be the best to recover catechins and to deliver extracts with the highest antiradical activity. Full article
Show Figures

Figure 1

Review

Jump to: Research

14 pages, 1227 KiB  
Review
The Molecular Basis of Different Approaches for the Study of Cancer Stem Cells and the Advantages and Disadvantages of a Three-Dimensional Culture
by Danila Cianciosi, Johura Ansary, Tamara Y. Forbes-Hernandez, Lucia Regolo, Denise Quinzi, Santos Gracia Villar, Eduardo Garcia Villena, Kilian Tutusaus Pifarre, José M. Alvarez-Suarez, Maurizio Battino and Francesca Giampieri
Molecules 2021, 26(9), 2615; https://doi.org/10.3390/molecules26092615 - 29 Apr 2021
Cited by 7 | Viewed by 3849
Abstract
Cancer stem cells (CSCs) are a rare tumor subpopulation with high differentiation, proliferative and tumorigenic potential compared to the remaining tumor population. CSCs were first discovered by Bonnet and Dick in 1997 in acute myeloid leukemia. The identification and isolation of these cells [...] Read more.
Cancer stem cells (CSCs) are a rare tumor subpopulation with high differentiation, proliferative and tumorigenic potential compared to the remaining tumor population. CSCs were first discovered by Bonnet and Dick in 1997 in acute myeloid leukemia. The identification and isolation of these cells in this pioneering study were carried out through the flow cytometry, exploiting the presence of specific cell surface molecular markers (CD34+/CD38). In the following years, different strategies and projects have been developed for the study of CSCs, which are basically divided into surface markers assays and functional assays; some of these techniques also allow working with a cellular model that better mimics the tumor architecture. The purpose of this mini review is to summarize and briefly describe all the current methods used for the identification, isolation and enrichment of CSCs, describing, where possible, the molecular basis, the advantages and disadvantages of each technique with a particular focus on those that offer a three-dimensional culture. Full article
Show Figures

Figure 1

38 pages, 15499 KiB  
Review
Structures and Bioactivities of Steroidal Saponins Isolated from the Genera Dracaena and Sansevieria
by Zaw Min Thu, Sann Myint Oo, Thinn Myat Nwe, Hnin Thanda Aung, Chabaco Armijos, Faiq H. S. Hussain and Giovanni Vidari
Molecules 2021, 26(7), 1916; https://doi.org/10.3390/molecules26071916 - 29 Mar 2021
Cited by 15 | Viewed by 4581
Abstract
The species Dracaena and Sansevieria, that are well-known for different uses in traditional medicines and as indoor ornamental plants with air purifying property, are rich sources of bioactive secondary metabolites. In fact, a wide variety of phytochemical constituents have been isolated so [...] Read more.
The species Dracaena and Sansevieria, that are well-known for different uses in traditional medicines and as indoor ornamental plants with air purifying property, are rich sources of bioactive secondary metabolites. In fact, a wide variety of phytochemical constituents have been isolated so far from about seventeen species. This paper has reviewed the literature of about 180 steroidal saponins, isolated from Dracaena and Sansevieria species, as a basis for further studies. Saponins are among the most characteristic metabolites isolated from the two genera. They show a great variety in structural motifs and a wide range of biological activities, including anti-inflammatory, anti-microbial, anti-proliferative effects and, in most case, remarkable cytotoxic properties. Full article
Show Figures

Figure 1

17 pages, 886 KiB  
Review
Intestinal Anti-Inflammatory Activity of Terpenes in Experimental Models (2010–2020): A Review
by Maria Elaine Araruna, Catarina Serafim, Edvaldo Alves Júnior, Clelia Hiruma-Lima, Margareth Diniz and Leônia Batista
Molecules 2020, 25(22), 5430; https://doi.org/10.3390/molecules25225430 - 20 Nov 2020
Cited by 23 | Viewed by 4601
Abstract
Inflammatory bowel diseases (IBDs) refer to a group of disorders characterized by inflammation in the mucosa of the gastrointestinal tract, which mainly comprises Crohn’s disease (CD) and ulcerative colitis (UC). IBDs are characterized by inflammation of the intestinal mucosa, are highly debilitating, and [...] Read more.
Inflammatory bowel diseases (IBDs) refer to a group of disorders characterized by inflammation in the mucosa of the gastrointestinal tract, which mainly comprises Crohn’s disease (CD) and ulcerative colitis (UC). IBDs are characterized by inflammation of the intestinal mucosa, are highly debilitating, and are without a definitive cure. Their pathogenesis has not yet been fully elucidated; however, it is assumed that genetic, immunological, and environmental factors are involved. People affected by IBDs have relapses, and therapeutic regimens are not always able to keep symptoms in remission over the long term. Natural products emerge as an alternative for the development of new drugs; bioactive compounds are promising in the treatment of several disorders, among them those that affect the gastrointestinal tract, due to their wide structural diversity and biological activities. This review compiles 12 terpenes with intestinal anti-inflammatory activity evaluated in animal models and in vitro studies. The therapeutic approach to IBDs using terpenes acts basically to prevent oxidative stress, combat dysbiosis, restore intestinal permeability, and improve the inflammation process in different signaling pathways. Full article
Show Figures

Graphical abstract

49 pages, 631 KiB  
Review
Antibacterial, Antifungal, Antimycotoxigenic, and Antioxidant Activities of Essential Oils: An Updated Review
by Aysegul Mutlu-Ingok, Dilara Devecioglu, Dilara Nur Dikmetas, Funda Karbancioglu-Guler and Esra Capanoglu
Molecules 2020, 25(20), 4711; https://doi.org/10.3390/molecules25204711 - 14 Oct 2020
Cited by 158 | Viewed by 15081
Abstract
The interest in using natural antimicrobials instead of chemical preservatives in food products has been increasing in recent years. In regard to this, essential oils—natural and liquid secondary plant metabolites—are gaining importance for their use in the protection of foods, since they are [...] Read more.
The interest in using natural antimicrobials instead of chemical preservatives in food products has been increasing in recent years. In regard to this, essential oils—natural and liquid secondary plant metabolites—are gaining importance for their use in the protection of foods, since they are accepted as safe and healthy. Although research studies indicate that the antibacterial and antioxidant activities of essential oils (EOs) are more common compared to other biological activities, specific concerns have led scientists to investigate the areas that are still in need of research. To the best of our knowledge, there is no review paper in which antifungal and especially antimycotoxigenic effects are compiled. Further, the low stability of essential oils under environmental conditions such as temperature and light has forced scientists to develop and use recent approaches such as encapsulation, coating, use in edible films, etc. This review provides an overview of the current literature on essential oils mainly on antifungal and antimycotoxigenic but also their antibacterial and antioxidant activities. Additionally, the recent applications of EOs including encapsulation, edible coatings, and active packaging are outlined. Full article
Show Figures

Figure 1

Back to TopTop