Role of Magmatic Activity in Generation of Ore Deposits

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Deposits".

Deadline for manuscript submissions: closed (30 November 2019) | Viewed by 31265

Special Issue Editors


E-Mail Website
Guest Editor
Department of Geological Sciences, University of Colorado at Boulder, Boulder, CO, USA
Interests: igneous petrology; geochemistry; volcanology; ore deposits; geoarchaeology

E-Mail Website
Guest Editor
Department of Geological Sciences, University of Colorado at Boulder, Boulder, USA
Interests: ore deposits; geochemistry; petrology; fluid inclusions

Special Issue Information

Dear Colleagues,

Magmas may supply the metals, the magmatic/hydrothermal volatile solutions that transport metals, or the heat to drive hydrothermal convection systems that redistribute and deposit metals in a wide range of different types of ore deposits. These include, among others, strictly magmatic deposits, such as Pt, in large layered igneous intrusions and some magmatic Fe/Cu/Au ore, magmatic/hydrothermal IOGC, and Cu/Mo/Au porphyry and breccia deposit, epithermal and skarn Au/Ag deposits, and REE ores. Since different types of magmas are generated in different tectonic environments, the types of ore deposits associated with these environments also vary. This Special Issue will focus on the multiple roles of magmas in the generation of a wide range of ore deposits, highlighting the diversity of processes that generate economic ore deposits associated in some fashion with igneous rocks. The issue will bring together new research results and conceptual models of ore deposit formation in the ever-evolving field of economic geology as a contribution to increasing our understanding of the complexity of processes related to the genesis of ore deposits and their relation to magma genesis and evolution.

Prof. Dr. Charles Stern
Dr. Alexandra Skewes
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ore deposits
  • magmas
  • magmatic/hydrothermal activity
  • magmatic ores
  • IOCG
  • porphyry
  • breccia
  • skarn
  • epithermal

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

3 pages, 161 KiB  
Editorial
Introduction to the Special Issue “Role of Magmatic Activity in the Generation of Ore Deposits”
by Charles R. Stern and M. Alexandra Skewes
Minerals 2020, 10(1), 57; https://doi.org/10.3390/min10010057 - 09 Jan 2020
Viewed by 1626
Abstract
This Special Issue presents eight original contributions concerning ore deposits in China, Russia, and Chile [...] Full article
(This article belongs to the Special Issue Role of Magmatic Activity in Generation of Ore Deposits)

Research

Jump to: Editorial

19 pages, 5666 KiB  
Article
Early Jurassic Mafic Intrusions in the Southern Youjiang Basin, SW China: Petrogenesis, Tectonic and Metallogenic Implications
by Wen Jiang, Quanren Yan, Li Deng, Bin Zhou, Zhongjin Xiang and Wenjing Xia
Minerals 2019, 9(12), 771; https://doi.org/10.3390/min9120771 - 11 Dec 2019
Cited by 5 | Viewed by 4694
Abstract
A suite of mafic intrusions, composed of diabase and micro-gabbro outcrops in the Jingxi area of southern Youjiang Basin, SW China. This study conducts geochronological, geochemical, and Sr–Nd isotopic analyses on the mafic intrusions in Jingxi with the aim of determining their petrogenesis, [...] Read more.
A suite of mafic intrusions, composed of diabase and micro-gabbro outcrops in the Jingxi area of southern Youjiang Basin, SW China. This study conducts geochronological, geochemical, and Sr–Nd isotopic analyses on the mafic intrusions in Jingxi with the aim of determining their petrogenesis, tectonic setting, and metallogenic implications. Zircon U–Pb dating for the mafic intrusions yielded an age of 183 ± 3 Ma (MSWD = 2.3), which is coeval with the Carlin-like gold mineralization in the Youjiang Basin. The mafic intrusions are alkaline in composition and characterized by low TiO2 (1.25–1.87 wt %) contents and low Ti/Y ratios (410–550). They exhibit OIB-like patterns of trace element distribution and they have low (87Sr/86Sr)i ratios of 0.704341 to 0.705677, slightly negative εNd(t) values of −0.30 to −2.16, low La/Ta (11.57–15.66) and La/Nb (0.77–1.06) ratios, with [La/Yb]N = 6.52–10.63. The geochemical characteristics, combined with regional considerations, suggest that the mafic intrusions originated from partial melting of upwelling asthenosphere within the garnet-spinel transition zone, as a result of intracontinental back-arc extension triggered by the steep subduction of the Paleo-Pacific plate beneath the South China Block. Moreover, the new data not only suggest Early Jurassic magma was a possible heat source, but also support a magmatism-related model for the Carlin-like gold mineralization in the Youjiang Basin. Full article
(This article belongs to the Special Issue Role of Magmatic Activity in Generation of Ore Deposits)
Show Figures

Graphical abstract

19 pages, 10512 KiB  
Article
Source and Tectonic Setting of Porphyry Mo Deposits in Shulan, Jilin Province, China
by Nan Ju, Sen Zhang, Lin-Lin Kou, Hai-Po Wang, Di Zhang, Yu-Chao Gu and Tong Wu
Minerals 2019, 9(11), 657; https://doi.org/10.3390/min9110657 - 26 Oct 2019
Cited by 4 | Viewed by 3180
Abstract
The Shulan area in Jilin Province is a part of the Lesser Xing’an–Zhangguangcai Range polymetallic ore belt, which is an important Cu–Mo ore region of northeast China. The discovery of three large Mo ore deposits (Fu’anbu, Chang’anbu, and Jidetun) highlights its potential for [...] Read more.
The Shulan area in Jilin Province is a part of the Lesser Xing’an–Zhangguangcai Range polymetallic ore belt, which is an important Cu–Mo ore region of northeast China. The discovery of three large Mo ore deposits (Fu’anbu, Chang’anbu, and Jidetun) highlights its potential for porphyry Mo ore deposits. Here we investigated the tectonic setting and mineralization of Mo ore deposits in the Shulan area, based on comparative study of the Fu’anbu, Chang’anbu, and Jidetun deposits. The ore-controlling structures are NE–SW- and NW–SE-trending faults. The main ore mineral in all three deposits is molybdenite. The ore bodies are all hosted in granites, have a stratiform or lenticular shape, and have strongly altered wall rocks. These observations indicate the Mo deposits in the Shulan area are typical porphyry Mo deposits. All were formed during the early Yanshanian (199.6–133.9 Ma). Biotite adamellites from the Chang’anbu deposit yield a U–Pb age of 182.10 ± 1.20 Ma. Molybdenites from the Fu’anbu and Jidetun deposits have Re–Os isochron ages of 166.9 ± 6.7 and 169.1 ± 1.8 Ma, respectively. Quartz and ore minerals were analysed for H–O and S–Pb isotopes, respectively. The results suggest the ore-forming materials were predominantly of upper-mantle origin, with secondary contributions from the lower crust. The ore-hosting granites have high concentrations of SiO2 (66.67–75.43 wt.%) and Al2O3 (12.91–16.44 wt.%), low concentrations of MgO (0.09–1.54 wt.%), and Ritman index (σ = K2O + Na2O)2/(SiO2 − 43)) ratios of 2.09–2.57. The granites are enriched in large-ion lithophile elements and depleted in high-field-strength elements, and have negative Eu anomalies. The ore-hosting rocks are geochemically similar to granites in northeastern China that were generated in a collisional orogeny. We conclude that early Yanshanian (199.6–133.9 Ma) mantle–crust-derived magmatism caused by the subduction of the Palaeo-Pacific Plate was the main source of Mo deposits in the Shulan area. Full article
(This article belongs to the Special Issue Role of Magmatic Activity in Generation of Ore Deposits)
Show Figures

Figure 1

19 pages, 8525 KiB  
Article
Geochronology and Geochemistry of Ore-Hosting Rhyolitic Tuff in the Kengdenongshe Polymetallic Deposit in the Eastern Segment of the East Kunlun Orogen
by Ya-Yun Liang, Rui Xia, Xiaoyu Shan, Yao Ma, En-Quan Zhao and Wenhui Guo
Minerals 2019, 9(10), 589; https://doi.org/10.3390/min9100589 - 28 Sep 2019
Cited by 12 | Viewed by 3207
Abstract
The Kengdenongshe Au–Ag–Pb–Zn polymetallic deposit, a newly discovered large-scale polymetallic deposit in the southeastern section of the East Kunlun Orogen (EKO), contains an Au resource of 40 t, Ag resource of 690 t and Pb–Zn resource of 10.5 × 105 t. The [...] Read more.
The Kengdenongshe Au–Ag–Pb–Zn polymetallic deposit, a newly discovered large-scale polymetallic deposit in the southeastern section of the East Kunlun Orogen (EKO), contains an Au resource of 40 t, Ag resource of 690 t and Pb–Zn resource of 10.5 × 105 t. The ore-bearing rocks are mainly composed of laminar barite and rhyolitic tuff. In this study, LA-ICP-MS zircon U–Pb dating and whole rock major and trace elements analyses have been conducted on the ore-bearing rhyolitic tuff. LA-ICP-MS zircon U–Pb dating data show that these rhyolitic tuffs were emplaced at ca. 243.3 ± 1.6 Ma. The samples show similar features to those of S-type granites, including high contents of SiO2 (76.4–82.6 wt. %) and Al2O3 (11.0–12.7 wt. %) and relatively low concentrations of Na2O (0.35–2.43 wt. %) and CaO (0.095–0.124 wt. %), with high A/CNK (molar [Al2O3/(CaO + Na2O + K2O)]) (1.72–2.03) and K2O/Na2O ratios (1.41–17.1). Further, they exhibit depletion in HFSEs (High Field Strength Elements) and enrichment in LREEs (Light Rare Earth Element) with negative Eu anomalies (Eu/Eu* = 0.51–0.64). These geochemical characteristics indicate that the Kengdenongcuo rhyolitic tuff originated from the fluid-absent melting of a plagioclase-poor, clay-rich metapelitic source and experienced minor fractional crystallization. In combination with arc-type magmatism and contemporaneous syn-collision granitoids in the region, the Kengdenongcuo tuff formed in a continental collision setting, implying that the Bayan Har–Songpan Ganzi Terrane collided with the East Kunlun Terrane and the Paleo-Tethys Ocean was closed at the period of ~243 Ma. The Kengdenongcuo polymetallic deposit formed at about the same time. Full article
(This article belongs to the Special Issue Role of Magmatic Activity in Generation of Ore Deposits)
Show Figures

Figure 1

17 pages, 6637 KiB  
Article
Age, Conditions of Formation, and Fluid Composition of the Pervomaiskoe Molybdenum Deposit (Dzhidinskoe Ore Field, South-Western Transbaikalia, Russia)
by Ludmila B. Damdinova, Bulat B. Damdinov, Xiao-Wen Huang, Nikolay V. Bryansky, Valentin B. Khubanov and Denis S. Yudin
Minerals 2019, 9(10), 572; https://doi.org/10.3390/min9100572 - 20 Sep 2019
Cited by 11 | Viewed by 2527
Abstract
The article discusses the composition of studied ore-forming solutions and the P-T conditions of molybdenum mineralization in the Pervomaisky stockwork deposit which is situated within the Dzhidinsky ore field (South-Western Transbaikalia, Russia). New geochronological data of zircons from granites, muscovite, and molybdenite from [...] Read more.
The article discusses the composition of studied ore-forming solutions and the P-T conditions of molybdenum mineralization in the Pervomaisky stockwork deposit which is situated within the Dzhidinsky ore field (South-Western Transbaikalia, Russia). New geochronological data of zircons from granites, muscovite, and molybdenite from the ore zones indicates the association of the granite formation and ore deposition processes which occurred 119–128 million years ago. Quartz-molybdenite veins of the Pervomaisky deposit were formed at the temperature of ≥314–186 °C with some boiling periods. Fluid inclusions in these veins have total salt concentration of 6.3–12.7 wt. % NaCl equivalent (eq. NaCl). The salt solution is composed of chlorides of Na, Ca, K, and Fe. The gas phase contains CO2, CH4, and N2. A series of elements were determined in fluid inclusions by laser ablation (LA)-ICP-MS: Li, Be, B, F, Na, Mg, Al, Cl, K, Ca, Mn, Fe, Cu, Zn, Nb, Mo, Ag, Sn, La, Ce, Ta, W, Au, Pb, Th, U. The Mo content reaches 559 ppm (average of 228 ± 190 ppm) in high-grade quartz-molybdenite veinlets, whereas Mo content is up to 212 ppm (average of 25 ± 29 ppm) in the low-grade veinlets. High-grade veinlets were formed by near-neutral solutions with a higher content of Mo, S, and F, while relatively low-grade veinlets were deposited from alkaline solutions. Our results demonstrate the pH of the solutions as one of the key factors for ore deposition. Full article
(This article belongs to the Special Issue Role of Magmatic Activity in Generation of Ore Deposits)
Show Figures

Graphical abstract

25 pages, 4019 KiB  
Article
Implications of Hf Isotopes for the Evolution of the Mantle Source of Magmas Associated with the Giant El Teniente Cu-Mo Megabreccia Deposit, Central Chile
by Charles R. Stern, Kwan-Nang Pang, Hao-Yang Lee, M. Alexandra Skewes and Alejandra Arévalo
Minerals 2019, 9(9), 550; https://doi.org/10.3390/min9090550 - 12 Sep 2019
Cited by 5 | Viewed by 3161
Abstract
We have determined the Hf isotopic compositions of 12 samples associated with the giant El Teniente Cu-Mo megabreccia deposit, central Chile. The samples range in age from ≥8.9 to 2.3 Ma and provide information about the temporal evolution of their magmatic sources from [...] Read more.
We have determined the Hf isotopic compositions of 12 samples associated with the giant El Teniente Cu-Mo megabreccia deposit, central Chile. The samples range in age from ≥8.9 to 2.3 Ma and provide information about the temporal evolution of their magmatic sources from the Late Miocene to Pliocene. Together with previously published data, the new analysis indicates a temporal decrease of 10 εHf(t) units, from +11.6 down to +1.6, in the 12.7 m.y. from 15 to 2.3 Ma. These variations imply increasing incorporation of continental crust through time in the magmas that formed these rocks. The fact that the samples include mantle-derived olivine basalts and olivine lamprophyres suggests that these continental components were incorporated into their mantle source, and not by intra-crustal contamination (MASH). We attribute the increase, between the Middle Miocene and Pliocene, of crustal components in the subarc mantle source below El Teniente to be due to increased rates of subduction erosion and transport of crust into the mantle. The deposit formed above a large, long-lived, vertically zoned magma chamber that developed due to compressive deformation and persisted between ~7 to 4.6 Ma. Progressively more hydrous mantle-derived mafic magmas feed this chamber from below, providing heat, H2O, S and metals, but no unique “fertile” Cu-rich magma was involved in the formation of the deposit. As the volume of these mantle-derived magmas decreased from the Late Miocene into the Pliocene, the chamber crystallized and solidified, producing felsic plutons and large metal-rich magmatic-hydrothermal breccias that emplaced Cu and S into the older (≥8.9 Ma) mafic host rocks of this megabreccia deposit. Full article
(This article belongs to the Special Issue Role of Magmatic Activity in Generation of Ore Deposits)
Show Figures

Figure 1

27 pages, 8120 KiB  
Article
Tectonic Transformation and Metallogenesis of the Yanshan Movement during the Late Jurassic Period: Evidence from Geochemistry and Zircon U-Pb Geochronology of the Adamellites in Xingcheng, Western Liaoning, China
by Pengyue Hu, Chenyue Liang, Changqing Zheng, Xiao Zhou, Yan Yang and Erlin Zhu
Minerals 2019, 9(9), 518; https://doi.org/10.3390/min9090518 - 28 Aug 2019
Cited by 8 | Viewed by 3698
Abstract
The Yanshan Movement occurred mainly during the Middle-Late Jurassic, and gave rise to NE trending structures, magmatic events, volcanism and mineral resources. The transformation and evolution of the movement during the Middle-Late Jurassic were investigated from the rock assemblage, geochemistry, and chronology in [...] Read more.
The Yanshan Movement occurred mainly during the Middle-Late Jurassic, and gave rise to NE trending structures, magmatic events, volcanism and mineral resources. The transformation and evolution of the movement during the Middle-Late Jurassic were investigated from the rock assemblage, geochemistry, and chronology in adamellites which were exposed in the Xingcheng area, western Liaoning. Two types of adamellites were recognized—biotite adamellites with the formation age of 172–168 Ma and garnet-bearing adamellites of 158–152 Ma. All the samples of the two types of adamellites displayed enriched characteristics with high content of SiO2 (66.86–75.55 wt.%) and total alkali (Na2O + K2O = 7.56–8.71 wt.%), high large ion lithophile element (LILE: K, Rb, Sr), and low high field strength element (HFSE: Ce, Ta, P, Ti). The biotite adamellites belong to metaluminous-peraluminous I-type granites, and show volcanic arc granite characteristics, and were formed by partial melting of the ancient crust in the compressional setting that resulting from the subduction of the Paleo-Pacific plate beneath the north margin of the North China Craton (NCC). The garnet-bearing adamellites are also metaluminous-peraluminous I-type granites, with characteristics of both the compressional and extensional regimes, which were formed at the middle-late stages of the continuing subduction of the Paleo-Pacific plate, while simultaneously, the frontal side of the subduction slab began to roll back, leading to an extensional environment. Combining with regional geophysical studies and our petrological and geochemical studies, we propose that the eastern segment of the northern margin of NCC may have been controlled by the Paleo-Pacific tectonic domain at the latest in the Middle Jurassic, while the initiation of the tectonic regime from a compressional to an extensional environment was during the Late Jurassic (158–152 Ma) as a response of the Yanshan Movement. Simultaneously, geochronological statistics of the ore deposits in western Liaoning show that the Mesozoic endogenetic metalliferous deposits formed in a compressive environment influenced by the subduction of the Paleo-Pacific plate, similar to the magma events in ages, and the magmatism provided the thermodynamic condition and the source of metallogenic hydrothermal fluid for mineralization. Full article
(This article belongs to the Special Issue Role of Magmatic Activity in Generation of Ore Deposits)
Show Figures

Figure 1

24 pages, 9139 KiB  
Article
Formation of the Granodiorite-Hosting Magushan Cu–Mo Polymetallic Deposit in Southern Anhui, Eastern China: Evidences from Geochronology and Geochemistry
by Huasheng Qi, Sanming Lu, Xiaoyong Yang, Yuzhang Zhou, Lili Zhao, Jianghong Deng and Jianshe Li
Minerals 2019, 9(8), 475; https://doi.org/10.3390/min9080475 - 02 Aug 2019
Cited by 12 | Viewed by 4942
Abstract
The newly discovered Magushan Cu-Mo polymetallic deposit, located in southeastern Anhui, eastern China, is a middle-scale skarn-type polymetallic deposit with different ore types of veinlets-disseminated skarn (the primary type), quartz veins, and porphyry. LA-ICP-MS zircon U–Pb analyses yielded a crystallization age of 135.7 [...] Read more.
The newly discovered Magushan Cu-Mo polymetallic deposit, located in southeastern Anhui, eastern China, is a middle-scale skarn-type polymetallic deposit with different ore types of veinlets-disseminated skarn (the primary type), quartz veins, and porphyry. LA-ICP-MS zircon U–Pb analyses yielded a crystallization age of 135.7 ± 1.5 Ma for the ore-related granodiorite in Magushan. The granodiorites are I-type granites in nature, characterized by metaluminous and high-K calc-alkaline characteristics. They are enriched in large ion lithophile elements (LILEs, e.g., Ba, Th, and U) and light rare earth elements (LREEs), and depleted in high field strength elements (NFSEs, e.g., Nb, Ta, and Ti) and heavy rare earth element (HREEs), with slightly negative Eu anomalies (Eu/Eu* = 0.81–0.86). These granodiorites show high Mg# (mainly > 40) values, high MgO (1.73–1.96 wt. %) and low Na2O (<4.21 wt. %) contents, with whole-rock (87Sr/86Sr)i ratios (0.708877 to 0.710398), negative εNd(t) values of −5.4 to −5.2, and negative zircon εHf(t) values of −4.60 to −1.37, with old two-stage Hf model ages (TDM2) between 1.2‒1.5 Ga. Besides, they are characterized by high radiogenic Pb isotopic compositions with (206Pb/204Pb)i = 18.44–18.56, (207Pb/204Pb)i = 15.66–15.67, and (208Pb/204Pb)i = 38.77–38.87. These granodiorites are characterized by high zircon Ce4+/Ce3+ ratios (average 893) and Eu/Eu* ratios (average 0.51), indicating high magmatic oxygen fugacities. The distinct geochemical and isotopic features suggest that the Magushan granodiorites could be formed by metasomatized mantle-derived magmas, mixing with materials from Neoproterozoic crust that is widely distributed in the Southern Anhui. This study concludes that the formation of the Magushan Cu-Mo polymetallic deposits may largely depend on an oxidizing environment and multi-sources mixed of mantle- and crust-derived materials. Full article
(This article belongs to the Special Issue Role of Magmatic Activity in Generation of Ore Deposits)
Show Figures

Figure 1

34 pages, 11661 KiB  
Article
Granitoids of the Ergelyakh Intrusion-Related Gold–Bismuth Deposit (Kular-Nera Slate Belt, Northeast Russia): Petrology, Physicochemical Parameters of Formation, and Ore Potential
by Albert I. Zaitsev, Valery Yu. Fridovsky and Maxim V. Kudrin
Minerals 2019, 9(5), 297; https://doi.org/10.3390/min9050297 - 15 May 2019
Cited by 11 | Viewed by 3355
Abstract
This paper describes features of petrographic and chemical compositions and isotopic dating of the Ergelyakh and Sokh plutons, located within the Kular-Nera slate belt, Verkhoyansk-Kolyma folded region (VKFR), Northeast Russia. Intrusion of the massifs took place approximately 145–150 million years ago. Different isotopic [...] Read more.
This paper describes features of petrographic and chemical compositions and isotopic dating of the Ergelyakh and Sokh plutons, located within the Kular-Nera slate belt, Verkhoyansk-Kolyma folded region (VKFR), Northeast Russia. Intrusion of the massifs took place approximately 145–150 million years ago. Different isotopic systems on the whole rock samples and mineral separates record at least two stages of later tectono-magmatic activity 130–120 and 110–100 million years ago. Granitoid magmas for the Ergelyakh and Sokh plutons were formed at high temperatures (950–1060 °C) within the amphibolitic lower crust of an island arc setting. The ages of crustal protoliths for granitoids of the Ergelyakh intrusion-related gold–bismuth deposit, calculated on Rb–Sr and Sm–Nd two-stage models, are 1109–1383 and 1199–1322 million years, respectively. Formation of the Ergelyakh and Sokh plutons took place within a significant temperature interval (<450 to 901 °C) and, with regard to the superposition of later events, lasted for a long time. During the cooling process of granitoid melts, at the time of biotite crystallization in both massifs, a significant increase of oxygen fugacity was registered. The ore potential of granitoids of both massifs seems to be similar, but due to some differences in the physicochemical parameters of their formation (redox conditions), it was partially realized only within the Ergelyakh massif with the generation of several minor intrusion-related gold–bismuth deposits. Granitoid melts of the Ergelyakh massif were formed in relatively heterogeneous and oxidizing conditions (∆Ni–NiO = +3.26 to –3.60). Granitoid melts for the Sokh massif (∆Ni–NiO = –2.88 to –9.27) were formed in reducing conditions. Full article
(This article belongs to the Special Issue Role of Magmatic Activity in Generation of Ore Deposits)
Show Figures

Figure 1

Back to TopTop