Editorial Board Members’ Collection Series: "Critical and Strategic Minerals"

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Deposits".

Deadline for manuscript submissions: closed (31 March 2024) | Viewed by 20779

Special Issue Editors


E-Mail Website
Guest Editor
Department of Geology, Saint Mary's University, Halifax, NS, Canada
Interests: granitoid rocks and associated rare metal mineralization; use of basement geochemical signatures in terrane analyses; geochemistry of volcanic rocks; komatiites and related rocks

E-Mail Website
Guest Editor
Faculty of Geology and Geoenvironment, University of Athens, Panepistimiopolis, 15784 Athens, Greece
Interests: geochemistry of ore deposits and ore-forming processes; mineralization of platinum-group elements (PGE); bio-mineralization; contamination of soil and water by heavy metals and metalloids; contamination of groundwater by Cr(VI)
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Mineral Resources, Geological Survey of Sweden, Box 670, 751 28 Uppsala, Sweden
Interests: geochemical exploration; ore deposit modelling; prospectivity mapping; machine learning; critical metals; compositional data analysis; mineral resource assessment

E-Mail Website
Guest Editor
Department of Earth Sciences, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
Interests: petrogenesis of ore-forming magmatic systems; high-T magmatic hydrothermal processes; contact metasomatic processes; mineralized porphyry systems, granitic systems, pegmatite systems, and their volcanic equivalents
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Critical and strategic minerals provide the building blocks for many modern technologies and are essential for economic prosperity and national security of many industrial countries. As of 2022, the USA and the European Union’s list of critical and strategic metallic elements include platinum-group elements (PGE), rare earth elements (REE), aluminum (Al), antimony (Sb), beryllium (Be), bismuth (Bi), cesium (Cs), chromium (Cr), cobalt (Co), gallium (Ga), germanium (Ge), hafnium (Hf), indium (In), lithium (Li), magnesium (Mg), manganese (Mn), nickel (Ni), niobium (Nb), rubidium (Rb), strontium (Sr), tantalum (Ta), tellurium (Te), tin (Sn), titanium (Ti), tungsten (W), vanadium (V), zinc (Zn), and zirconium (Zr). The global demand for these critical and strategic minerals is expected to significantly increase as the world transitions to clean energy and other clean technologies.

The main objective of this Special Issue on critical and strategic minerals is to improve our understanding of the mineral deposits hosting these metals especially in areas that assist and promote exploration and sustainable exploitation. Submissions on all types of deposits and pre-existing tailings are welcomed.

Prof. Dr. Jaroslav Dostal
Prof. Dr. Maria Economou-Eliopoulos
Dr. Martiya Sadeghi
Prof. Dr. David Lentz
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • critical minerals
  • critical metals
  • critical raw materials
  • ore deposits
  • isotopes
  • geochemistry
  • platinum-group elements (PGE)
  • rare earth elements (REE)

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 16384 KiB  
Article
Leveraging Domain Expertise in Machine Learning for Critical Metal Prospecting in the Oslo Rift: A Case Study for Fe-Ti-P-Rare Earth Element Mineralization
by Ying Wang, Nolwenn Coint, Eduardo Teixeira Mansur, Pedro Acosta-Gongora, Ana Carolina Rodrigues Miranda, Aziz Nasuti and Vikas Chand Baranwal
Minerals 2024, 14(4), 377; https://doi.org/10.3390/min14040377 - 03 Apr 2024
Viewed by 572
Abstract
Global demand for critical raw materials, including phosphorus (P) and rare earth elements (REEs), is on the rise. The south part of Norway, with a particular focus on the Southern Oslo Rift region, is a promising reservoir of Fe-Ti-P-REE resources associated with magmatic [...] Read more.
Global demand for critical raw materials, including phosphorus (P) and rare earth elements (REEs), is on the rise. The south part of Norway, with a particular focus on the Southern Oslo Rift region, is a promising reservoir of Fe-Ti-P-REE resources associated with magmatic systems. Confronting challenges in mineral exploration within these systems, notably the absence of alteration haloes and distal footprints, we have explored alternative methodologies. In this study, we combine machine learning with geological expertise, aiming to identify prospective areas for critical metal prospecting. Our workflow involves processing over 400 rock samples to create training datasets for mineralization and non-mineralization, employing an intuitive sampling strategy to overcome an imbalanced sample ratio. Additionally, we convert airborne magnetic, radiometric, and topographic maps into machine learning-friendly features, with a keen focus on incorporating domain knowledge into these data preparations. Within a binary classification framework, we evaluate two commonly used classifiers: a random forest (RF) and support vector machine (SVM). Our analysis shows that the RF model outperforms the SVM model. The RF model generates a predictive map, identifying approximately 0.3% of the study area as promising for mineralization. These findings align with legacy data and field visits, supporting the map’s potential to guide future surveys. Full article
Show Figures

Figure 1

16 pages, 17356 KiB  
Article
Process Mineralogy of Lithium and Rubidium in the Diantan Polymetallic Mining Area, Tengchong, Southwest China
by Liming Ouyang, Jianqi Zhou, Huan Li, Majid Ghaderi, Wenbo Sun, Yiming Xie and Xiaofan Li
Minerals 2024, 14(4), 369; https://doi.org/10.3390/min14040369 - 30 Mar 2024
Viewed by 482
Abstract
Highly differentiated granite often contains abundant key metal resources, such as lithium and rubidium. The Tengchong area of Yunnan hosts a large number of highly differentiated granites from the Cretaceous age. Among these, granite samples from the Diantan tin–lead–zinc polymetallic mining area exhibit [...] Read more.
Highly differentiated granite often contains abundant key metal resources, such as lithium and rubidium. The Tengchong area of Yunnan hosts a large number of highly differentiated granites from the Cretaceous age. Among these, granite samples from the Diantan tin–lead–zinc polymetallic mining area exhibit Li contents exceeding 0.02% and Rb contents surpassing 0.1%. This suggests a promising potential for Li and Rb mineralization. However, the occurrence status and process mineralogical characteristics of Li and Rb remain unclear, directly impacting the assessment of the region’s comprehensive utilization potential for these key metals. This study focuses on representative granite samples from the Diantan mining area to conduct petrographic and process mineralogical research, examining single mineral chemical composition, physical properties, element occurrence state, and mineral embedding particle size. The results indicate that mica minerals primarily contain Li, while both feldspar and mica minerals are the main carriers of Rb. Zinnwaldite not only contains the highest Rb proportion among the samples but also plays a significant role in Li occurrence. Based on the dissociation characteristics, it is recommended to grind the material to a fineness of −0.075 mm, comprising 80% of the particles, before proceeding to the final flotation process. This would result in approximately 95% dissociation of the mica in the sample. Since mica is predominantly distributed between quartz and feldspar particles, with relatively low binding force, it facilitates mineral dissociation during the grinding process. Therefore, the actual beneficiation process may consider a moderately coarser grinding fineness based on the aforementioned findings. Full article
Show Figures

Figure 1

21 pages, 3280 KiB  
Article
Rare-Earth Element Phase Associations in Four West Virginia Coal Samples
by Rachel Yesenchak, Shikha Sharma, Christina Lopano and Scott Montross
Minerals 2024, 14(4), 362; https://doi.org/10.3390/min14040362 - 29 Mar 2024
Viewed by 682
Abstract
Rare-earth elements are critical components of technologies used in renewable energy, communication, transportation, and national defense. Securing supply chains by developing domestic rare-earth resources, including coal and coal byproducts, has become a national priority. With some of the largest coal reserves in the [...] Read more.
Rare-earth elements are critical components of technologies used in renewable energy, communication, transportation, and national defense. Securing supply chains by developing domestic rare-earth resources, including coal and coal byproducts, has become a national priority. With some of the largest coal reserves in the country, states within the Appalachian Basin can play a key role in supplying these elements. Understanding rare-earth element phase associations and the processes that lead to enrichment in these coals will inform resource prospecting and recovery techniques. This study used sequential leaching in addition to scanning electron microscopy and energy-dispersive X-ray spectroscopy to identify rare-earth element modes of occurrence in WV coals. The results indicate that heavier elements have a stronger association with organic matter and that phosphate minerals are primary sources of both heavy and light rare-earth elements. However, these phases are shielded by a resistant aluminosilicate matrix that can impede the recovery of rare-earth elements using traditional methods. Full article
Show Figures

Figure 1

33 pages, 10701 KiB  
Article
Geophysical Constraints to the Geological Evolution and Genesis of Rare Earth Element–Thorium–Uranium Mineralization in Pegmatites at Alces Lake, SK, Canada
by Kateryna Poliakovska, Irvine R. Annesley and Zoltan Hajnal
Minerals 2024, 14(1), 25; https://doi.org/10.3390/min14010025 - 25 Dec 2023
Viewed by 1412
Abstract
This investigation establishes an integrated method for rare earth elements (REE) exploration through a very promising and advanced exploration prospect in the Alces Lake area (SK, Canada) by assessing the integrated analysis of several multisource geophysical datasets. The resulting outcome provides important lithostructural [...] Read more.
This investigation establishes an integrated method for rare earth elements (REE) exploration through a very promising and advanced exploration prospect in the Alces Lake area (SK, Canada) by assessing the integrated analysis of several multisource geophysical datasets. The resulting outcome provides important lithostructural information to the well-exposed, mineralized middle-to-lower crust at Alces Lake, comprising deep-seated poly-phase folds, ductile shear zones, and brittle faults. Geophysical–geological models of the Alces Lake property were constructed at different scales. The area of interest is located within the Beaverlodge Domain, about 28 km north of the Athabasca Basin’s northern margin. It contains some of the highest-grade rare earth elements (REE) in the world with the REE hosted predominantly in monazites within quartzo-feldspathic granitic to biotite–garnet–monazite–zircon-rich restite-bearing/cumulate mush melt pegmatites of anatectic origin (abyssal). Geophysical magnetic, gravity, and radiometric data were used together with Shuttle Radar Topography Mission (SRTM) images to facilitate the processing, modeling, and interpretation. Consequently, major structures were identified at different scales; however, the emphasis was given to studying those at the district/camp scale. The REE zones discovered to date occur within a large district-scale refolded synformal anticline. The eastern limb of this folded structure comprises a 30–40 km long, NW-trending shear zone/fault corridor with deep-seated structural crustal roots that may have served as the major pathway for ascending fluids/melts and facilitated the emplacement of mineralization. Thus, shear zones, faults, and folds in combination with lithological contacts/rheological contrasts appear to control residual/cumulate pegmatite emplacement and monazite deposition. Anomalies obtained from the airborne equivalent thorium survey data prove to be the most useful for REE pegmatite exploration. The results herein provide new interpretation and modeling perspectives leading to a better understanding of the distribution and lithostructural controls of REE on the property, and to new guidelines for future exploration programs at Alces Lake and elsewhere in northern Saskatchewan. Full article
Show Figures

Figure 1

25 pages, 7201 KiB  
Article
The REE-Zr-U-Th Minerals of the Maronia Monzodiorite, N. Greece: Implications on the Saturation and Segregation Mechanisms of Critical Metals in Intermediate–Mafic Compositions
by Charalampos Vasilatos and Angeliki Papoutsa
Minerals 2023, 13(10), 1256; https://doi.org/10.3390/min13101256 - 26 Sep 2023
Viewed by 895
Abstract
This work delves into the presence of REE-Ti-Zr-U-Th minerals, in the mafic–intermediate rocks of the Maronia pluton, Greece, an Oligocene intrusion formed through arc-magmatism during subduction. In Maronia monzodiorite, critical metals are contained in three principal mineral groups, namely, the REE-Ti-Zr, REE-Ca-P, and [...] Read more.
This work delves into the presence of REE-Ti-Zr-U-Th minerals, in the mafic–intermediate rocks of the Maronia pluton, Greece, an Oligocene intrusion formed through arc-magmatism during subduction. In Maronia monzodiorite, critical metals are contained in three principal mineral groups, namely, the REE-Ti-Zr, REE-Ca-P, and U-Th assemblages. The REE-Ti-Zr group includes REE-ilmenite, chevkinite-like phases, zirconolite, and baddeleyite. The REE-Ca-P assemblage is represented by allanite-(Ce), monazite-(Ce), and huttonitic monazite-(Ce). The U-Th assemblage comprises thorite–coffinite and uraninite–thorianite solid solutions. The paragenetic sequencing of these minerals offers insights into their formation conditions and correlation with the pluton’s magmatic evolution. In the REE-Ti-Zr group, mineral formation progresses from REE-ilmenite to baddeleyite through chevkinite-like phases and zirconolite under oxidizing conditions. The REE-Ca-P sequence involves allanite-(Ce), followed by monazite-(Ce), late allanite-(Ce), and huttonitic monazite-(Ce). In the U-Th group, earlier thorite–coffinite phases are succeeded by uraninite–thorianite solid solutions, indicating Si-undersaturation at late magmatic stages. Fluctuations in Ca-activity induce alternating formations of allanite-(Ce) and monazite-(Ce). These mineral variations are attributed to early-stage interactions between high-K calc-alkaline and shoshonitic gabbroic melts, influencing critical metal enrichment and mineral speciation. The study’s insights into paragenesis and geological processes offer implications for mineral exploration in analogous geological settings. Full article
Show Figures

Figure 1

24 pages, 10815 KiB  
Article
New Insights into the Genesis of Dibrova U-Th-REE Mineral Deposit (West Azov Megablock, Ukraine) Using Monazite Chemistry
by Kateryna Poliakovska, Volodymyr Pokalyuk, Irvine R. Annesley and Olena Ivanik
Minerals 2023, 13(10), 1241; https://doi.org/10.3390/min13101241 - 23 Sep 2023
Viewed by 950
Abstract
This paper investigates the monazite grains from the Dibrova rare-earth-thorium-uranium (U-Th-REE) mineral deposit within the Azov Megablock of Ukrainian Shield. U-Th-REE mineralization is associated with K-feldspar-quartz metasandstones and metagritstones (hereafter quartzites) and pegmatoids. The latter possibly represent products of ultrametamorphism/granitization of initially sedimentary [...] Read more.
This paper investigates the monazite grains from the Dibrova rare-earth-thorium-uranium (U-Th-REE) mineral deposit within the Azov Megablock of Ukrainian Shield. U-Th-REE mineralization is associated with K-feldspar-quartz metasandstones and metagritstones (hereafter quartzites) and pegmatoids. The latter possibly represent products of ultrametamorphism/granitization of initially sedimentary clastic rocks during tectono-magmatic activation during the Paleoproterozoic. Ores are composed of quartz as a principal mineral, feldspar, sillimanite, muscovite, monazite, brannerite, uraninite, zircon, rutile, and sulfides. The purpose of this work was to obtain insights into the genesis of the mineral deposit by studying the monazite grains, their chemistry, and ages. Petrographic research work was carried out that included studying/analyzing the monazites from various monazite-bearing rocks (quartzites, pegmatoid, and biotite schist samples). A variety of methods and tools were used, including optical microscopy study, X-ray fluorescence (XRF) mapping of selected samples, as well as scanning electron microscope (SEM) and electron microprobe (EPMA) characterization of monazites, including U-Th-Pb monazite chemical dating. U-Pb-Th chemical electron microprobe dating of the monazites yielded two major distinct monazite age groups at 3.0–2.8 Ga and 2.2–2.0 Ga. The first age group corresponds to the time of formation of the Archean granitoids, which served as a source of monazite for its clastic sedimentation during the Paleoproterozoic in the Dibrova suite sediments. The second age group corresponds to the reprecipitation (i.e., remobilization) of monazite during the Paleoproterozoic tectono-magmatic activation. The location of the mineral deposit within the deep mantle-crustal Devladivska shear zone is another favorable factor for the remobilization and transport of metals. New data on the age of mineralization yield a more complete understanding of the geological history and formation of the complex polyphase rare-earth-uranium-thorium Dibrova mineral deposit. Full article
Show Figures

Figure 1

28 pages, 24421 KiB  
Article
Paleoproterozoic East Pana Layered Intrusion (Kola Peninsula, Russia): Geological Structure, Petrography, Geochemistry and Cu-Ni-PGE Mineralization
by Pavel Pripachkin, Tatiana Rundkvist and Nikolay Groshev
Minerals 2023, 13(5), 681; https://doi.org/10.3390/min13050681 - 16 May 2023
Cited by 2 | Viewed by 1124
Abstract
The East Pana intrusion is a part of the Paleoproterozoic Fedorova–Pana complex (FPC), which belongs to the group of Fennoscandian layered mafic–ultramafic massifs. This article discusses the magmatic stratification of the East Pana intrusion, as well as Cu-Ni and platinum-group elements (PGE) mineralization [...] Read more.
The East Pana intrusion is a part of the Paleoproterozoic Fedorova–Pana complex (FPC), which belongs to the group of Fennoscandian layered mafic–ultramafic massifs. This article discusses the magmatic stratification of the East Pana intrusion, as well as Cu-Ni and platinum-group elements (PGE) mineralization (PGE zones A, B and C) in its various parts with a total length of more than 20 km, including the East Chuarvy PGE deposit. Based on the whole-rock data on the distribution of major, trace, and ore-forming elements, it is assumed that PGE zone A belongs to the main ore–magmatic system of the FPC, while PGE zones B and C belong to the minor ore–magmatic systems. At the same time, additional magmatic injection played an important role in the formation of economic Cu-Ni-PGE mineralization (PGE zone B), characterized by high PGE concentrations and moderate palladium enrichment. On the normalized distribution spectra of trace elements, the crystallization products of this injection (Gabbronorite Zone 2) have a positive Zr-Hf anomaly, which distinguishes it from host rocks with an anomaly of the opposite sign (Gabbronorite Zone 1, Gabbro Zone). It is assumed that this portion of magma was intruded as a sill of crystal mush, the fractionation of which at depth led to its enrichment with residual liquid. Full article
Show Figures

Figure 1

21 pages, 3526 KiB  
Article
Occurrences of Niobium and Tantalum Mineralization in Mongolia
by Jaroslav Dostal and Ochir Gerel
Minerals 2022, 12(12), 1529; https://doi.org/10.3390/min12121529 - 29 Nov 2022
Cited by 6 | Viewed by 2593
Abstract
Niobium and tantalum are two rare metals that have similar physical and chemical properties and occur together in nature. They are considered to be strategic and critical materials for the economy and national security of many industrial countries. Both elements are on the [...] Read more.
Niobium and tantalum are two rare metals that have similar physical and chemical properties and occur together in nature. They are considered to be strategic and critical materials for the economy and national security of many industrial countries. Both elements are on the 2022 List of Critical Minerals of the USA as well as on the European Union’s List of Critical Raw Materials. They rarely substitute for common elements in rock-forming minerals but are essential components in a range of rare minerals, particularly oxides and subordinately silicates. The economically important minerals are oxides. The columbite-tantalite and pyrochlore-microlite groups are the most common Ta- and Nb-bearing minerals. In Mongolia, primary niobium and tantalum mineralization includes two main types. The first type is mineralization associated with alkaline to peralkaline granites, pegmatites and syenites whereas the second type is related to the lithium-fluorine-rich peraluminous granites and related rocks (pegmatites and ongonites). The host rocks of both types of mineralization are the fractionated felsic rocks, which contain the primary magmatic ore assemblages associated with fractionation of magma rich in rare metals. Both assemblages were subsequently overprinted by the late magmatic to hydrothermal fluids, which remobilized and enriched the original mineralization. The newly formed ore mineral assemblages display complex replacement textures. In the case of peralkaline felsic rocks the processes produced the mineralization of Zr, Nb, heavy REE, Y, U, Th and Ta whereas peraluminous Li-F felsic rocks contain mainly mineralization of Sn, W, Ta, Li, and Nb. Mongolia hosts several promising occurrences of both types of Nb-Ta mineralization. However, they have not yet been sufficiently explored. Currently, the most promising is the occurrence in the Devonian Khalzan Buregtei peralkaline granites in northwestern Mongolia, where Nb-Ta is associated with REE and Zr mineralization. Mesozoic carbonatites of southern Mongolia do not host significant Nb and Ta mineralization. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

29 pages, 43506 KiB  
Review
Antimony’s Significance as a Critical Metal: The Global Perspective and the Greek Deposits
by Christos Kanellopoulos, Sotiris Sboras, Panagiotis Voudouris, Konstantinos Soukis and Robert Moritz
Minerals 2024, 14(2), 121; https://doi.org/10.3390/min14020121 - 23 Jan 2024
Viewed by 1388
Abstract
Antimony is widely acknowledged as a critical raw material of worldwide significance, based on its recognition by many countries. According to current projections, there is an anticipated increase in the demand for antimony in the forthcoming years. An issue of significant concern within [...] Read more.
Antimony is widely acknowledged as a critical raw material of worldwide significance, based on its recognition by many countries. According to current projections, there is an anticipated increase in the demand for antimony in the forthcoming years. An issue of significant concern within the supply chain, which poses a substantial obstacle to sustainable development, is the global unequal allocation of abundant antimony resources. Most nations exhibited a high degree of dependence on a few countries for their net imports of antimony, resulting in a notable disruption and raising concerns regarding the supply chain. In most countries, antimony exploration and exploitation have been paused for a long period due to financial constraints associated with operations and environmental concerns. Nowadays, identifying additional antimony reserves, particularly in countries that heavily rely on new technologies and use significant amounts of antimony, is imperative and presents a pressing endeavor. Greece is recognized as one of the European Union member states with identified antimony deposits and a historical record of antimony exploitation. A thorough description, examination, and re-assessment of all existing data on the deposits and occurrences of antimony in Greece is presented. Most of Greece’s antimony deposits are related to hydrothermal processes, controlled by specific tectonic structures, and associated with Cenozoic magmatism. They are classified either as simple Sb-deposits, where the primary ore is a stibnite mineral, or complex polymetallic deposits with varying contents that include antimony minerals. Full article
Show Figures

Figure 1

22 pages, 4750 KiB  
Review
Fertility Indicators for Porphyry-Cu-Au+Pd±Pt Deposits: Evidence from Skouries, Chalkidiki Peninsula, Greece, and Comparison with Worldwide Mineralizations
by Maria Economou-Eliopoulos, Federica Zaccarini and Giorgio Garuti
Minerals 2023, 13(11), 1413; https://doi.org/10.3390/min13111413 - 06 Nov 2023
Viewed by 1249
Abstract
The research interest for many authors has been focused on the origin, recovery, and exploration of critical metals, including platinum-group elements (PGEs), with the aim of finding new potential sources. Many giant porphyry Cu deposits are well known around the Pacific Rim, in [...] Read more.
The research interest for many authors has been focused on the origin, recovery, and exploration of critical metals, including platinum-group elements (PGEs), with the aim of finding new potential sources. Many giant porphyry Cu deposits are well known around the Pacific Rim, in the Balkan–Carpathian system, Himalayas, China, and Malaysia. However, only certain porphyry Cu-Au deposits are characterized by the presence of significant Pd and Pt contents (up to 20 ppm). This contribution provides new analytical data on porphyry-Cu-Au±Pd±Pt deposits from the Chalkidiki Peninsula and an overview of the existing geochemical characteristics of selected porphyry-Cu deposits worldwide in order to define significant differences between PGE-fertile and PGE-poor porphyry-Cu intrusions. The larger Mg, Cr, Ni, Co, and Re contents and smaller LILE elements (Ba and Sr) in fertile porphyry-Cu-Au-(PGE) reflect the larger contribution from the mantle to the parent magmas. In contrast, the smaller Mg, Cr, Ni, Co, and Re contents and larger Ba and Sr in PGE-poor porphyry-Cu-Mo deposits from the Chalkidiki Peninsula (Vathi, Pontokerasia, and Gerakario) and Russia–Mongolia suggest the presence of parent magmas with a more crustal contribution. Although there is an overlap in the plots of those elements, probably due to the evolution of the ore-forming system, consideration of the maximum contents of Mg, Cr, Ni, and Co is proposed. Magnetite which separated from the mineralized Skouries porphyry of Greece showed small negative Eu anomalies (Eu/Eu* ≥ 0.55), reflecting a relatively high oxidation state during the cooling of the ore-forming system. The relatively high, up to 6 ppm (Pd+Pt), and low Cr content towards the transition from the porphyry to epithermal environment, coupled with the occurrence of Pd, Te, and Se minerals (merenskyite, clausthalite), and tetrahedrite–tennantite in fertile porphyry Cu deposits (Elatsite deposit, Bulgaria), reflect a highly fractionated ore-forming system. Thus, in addition to the crustal and mantle recycling, metasomatism, high oxidation state, and abundant magmatic water, other factors required for the origin of fertile porphyry-Cu deposits are the critical degree of mantle melting to release Pt and Pd in the ore-forming fluids and the degree of fractionation, as reflected in the mineral chemistry and geochemical data. Full article
Show Figures

Figure 1

22 pages, 6303 KiB  
Review
NdFeB Permanent Magnet Uses, Projected Growth Rates and Nd Plus Dy Demands across End-Use Sectors through 2050: A Review
by James W. Heim II and Randy L. Vander Wal
Minerals 2023, 13(10), 1274; https://doi.org/10.3390/min13101274 - 29 Sep 2023
Cited by 2 | Viewed by 1886
Abstract
Rare earth element (REE) permanent magnets (NdFeB) are a critical element in a vast and growing number of industrial applications. In consumer electronics, a broad category encompassing computer, CD, and DVD hard drives, in addition to the ubiquitous cell phones, the nominal NdFeB [...] Read more.
Rare earth element (REE) permanent magnets (NdFeB) are a critical element in a vast and growing number of industrial applications. In consumer electronics, a broad category encompassing computer, CD, and DVD hard drives, in addition to the ubiquitous cell phones, the nominal NdFeB magnet content may be small, but the global market share for this sector accounts for almost 30% of NdFeB demand, due to a large and continually increasing consumer base. It is estimated that wind turbines that primarily employ permanent magnets will add roughly 110 GW annually of on- and off-shore capability over the next few years. Electric vehicles (EVs) and E-bicycles (EBs) equipped with permanent magnet motors comprise the transportation contribution. Permanent magnet motors have garnered nearly 100% of the market share among EV manufacturers worldwide. Industrial, professional service, and personal robots, most using permanent magnets, are also included in the projected global need for rare earths, particularly Nd and Dy. The sector projects significant growth of approximately 10% across robotic categories. In this paper, we calculate the future demand for Nd and Dy through 2050 across these sectors using a compounded annual growth rate coupled with magnet weight and rare earth content. Uncertainties in the estimates, such as the true global production of Nd, a range of end-product scales and/or unit types in each sector, varied magnet compositions, and the variety of uses within a sector, are all considered. Full article
Show Figures

Figure 1

20 pages, 5522 KiB  
Review
Rare Earth Element Deposits in Mongolia
by Jaroslav Dostal and Ochir Gerel
Minerals 2023, 13(1), 129; https://doi.org/10.3390/min13010129 - 16 Jan 2023
Cited by 2 | Viewed by 6095
Abstract
In Mongolia, rare earth element (REE) mineralization of economic significance is related either to the Mesozoic carbonatites or to the Paleozoic peralkaline granitoid rocks. Carbonatites occur as part of alkaline silicate-carbonatite complexes, which are composed mainly of nepheline syenites and equivalent volcanic rocks. [...] Read more.
In Mongolia, rare earth element (REE) mineralization of economic significance is related either to the Mesozoic carbonatites or to the Paleozoic peralkaline granitoid rocks. Carbonatites occur as part of alkaline silicate-carbonatite complexes, which are composed mainly of nepheline syenites and equivalent volcanic rocks. The complexes were emplaced in the Gobi-Tien Shan rift zone in southern Mongolia where carbonatites usually form dikes, plugs or intruded into brecciated rocks. In mineralized carbonatites, REE occur mainly as fluorocarbonates (bastnäsite, synchysite, parisite) and apatite. Apatite is also present in the carbonatite-hosted apatite-magnetite (mostly altered to hematite) bodies. Alkaline silicate rocks and carbonatites show common geochemical features such as enrichment of light REE but relative depletion of Ti, Zr, Nb, Ta and Hf and similar Sr and Nd isotopic characteristics suggesting the involvement of the heterogeneous lithospheric mantle in the formation of both carbonatites and associated silicate rocks. Hydrothermal fluids of magmatic origin played an important role in the genesis of the carbonatite-hosted REE deposits. The REE mineralization associated with peralkaline felsic rocks (peralkaline granites, syenites and pegmatites) mainly occurs in Mongolian Altai in northwestern Mongolia. The mineralization is largely hosted in accessory minerals (mainly elpidite, monazite, xenotime, fluorocarbonates), which can reach percentage levels in mineralized zones. These rocks are the results of protracted fractional crystallization of the magma that led to an enrichment of REE, especially in the late stages of magma evolution. The primary magmatic mineralization was overprinted (remobilized and enriched) by late magmatic to hydrothermal fluids. The mineralization associated with peralkaline granitic rocks also contains significant concentrations of Zr, Nb, Th and U. There are promising occurrences of both types of rare earth mineralization in Mongolia and at present, three of them have already established significant economic potential. They are mineralization related to Mesozoic Mushgai Khudag and Khotgor carbonatites in southern Mongolia and to the Devonian Khalzan Buregtei peralkaline granites in northwestern Mongolia. Full article
Show Figures

Figure 1

Back to TopTop