Antibiotic Resistance in Foodborne Bacteria

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Food Microbiology".

Deadline for manuscript submissions: closed (31 January 2024) | Viewed by 12329

Special Issue Editor


E-Mail Website
Guest Editor
Department of Food Science, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
Interests: food microbiology

Special Issue Information

Dear Colleagues,

This Special Issue welcomes original, high-quality papers (research articles/reviews/short communications) on topics related to antibiotic resistance in foodborne bacteria. There will be a particular focus on topics including pathogenic microorganisms present in food, antimicrobial resistance (AMR), antibiotic resistome, horizontal gene transfer that can lead to the genetic exchange of antimicrobial resistance genes (ARGs) between bacteria, whole genome sequencing (WGS) analysis, and one health approaches for the control of antimicrobials disseminated in food. Similarly, we also welcome manuscripts pertaining to food safety and alternative practices and approaches to prevent or reduce the emergence of drug-resistant bacteria.

We look forward to your contribution.

Prof. Dr. Jeverson Frazzon
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antimicrobial resistance in food
  • pathogenic microorganisms
  • foodborne bacteria
  • antibiotic resistome
  • intrinsic resistance
  • acquired resistance
  • vancomycin resistant—VRE
  • methicillin resistant—MRSA
  • β-lactam antibiotics
  • one health approach

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 1942 KiB  
Article
Rare Plasmid-Mediated AmpC Beta-Lactamase DHA-1 Located on Easy Mobilized IS26-Related Genetic Element Detected in Escherichia coli from Livestock and Food in Germany
by Chiara Manfreda, Annemarie Kaesbohrer, Silvia Schmoger, Tanja Skladnikiewicz-Ziemer, Mirjam Grobbel and Alexandra Irrgang
Microorganisms 2024, 12(3), 632; https://doi.org/10.3390/microorganisms12030632 - 21 Mar 2024
Viewed by 740
Abstract
AmpC beta-lactamases cause resistance to third-generation cephalosporins, including beta-lactamase inhibitors. In Escherichia coli from the German food production chain, the majority of AmpC beta-lactamase activity can be attributed to plasmid-mediated CMY-2 or overproduction of chromosomal AmpC beta-lactamase, but occasionally other enzymes like DHA-1 [...] Read more.
AmpC beta-lactamases cause resistance to third-generation cephalosporins, including beta-lactamase inhibitors. In Escherichia coli from the German food production chain, the majority of AmpC beta-lactamase activity can be attributed to plasmid-mediated CMY-2 or overproduction of chromosomal AmpC beta-lactamase, but occasionally other enzymes like DHA-1 are involved. This study investigated the prevalence of the AmpC beta-lactamase DHA-1 in ESBL/AmpC-producing E. coli (n = 4706) collected between 2016 and 2021 as part of a German antimicrobial resistance monitoring program along the food chain. Eight isolates (prevalence < 0.2%) were detected and further characterized by PFGE, transformation and conjugation experiments as well as short-read and long-read sequencing. All eight strains harbored blaDHA-1 together with qnrB4, sul1 and mph(A) resistance genes on an IS26 composite transposon on self-transferable IncFII or IncFIA/FIB/II plasmids. During laboratory experiments, activation of the translocatable unit of IS26-bound structures was observed. This was shown by the variability of plasmid sizes in original isolates, transconjugants or transferred plasmids, and correspondingly, duplications of resistance fragments were found in long-read sequencing. This activation could be artificial due to laboratory handling or naturally occurring. Nevertheless, DHA-1 is a rare AmpC beta-lactamase in livestock and food in Germany, and its dissemination will be monitored in the future. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Foodborne Bacteria)
Show Figures

Figure 1

13 pages, 630 KiB  
Article
Antibiotic Resistance of Bacillus cereus in Plant Foods and Edible Wild Mushrooms in a Province
by Xiaoyan Cha, Yingting Lin, Charles Brennan, Jianxin Cao and Ying Shang
Microorganisms 2023, 11(12), 2948; https://doi.org/10.3390/microorganisms11122948 - 09 Dec 2023
Viewed by 1293
Abstract
Bacillus cereus is a common pathogen causing foodborne diseases, secreting and producing a large number of toxins that can cause a variety of diseases and pose many threats to human health. In this study, 73 strains of Bacillus cereus were isolated and identified [...] Read more.
Bacillus cereus is a common pathogen causing foodborne diseases, secreting and producing a large number of toxins that can cause a variety of diseases and pose many threats to human health. In this study, 73 strains of Bacillus cereus were isolated and identified from six types of foods from seven different cities in a province, and the antibiotic-resistant phenotype was detected by using the Bauer–Kirby method. Results showed that the 73 isolates were completely sensitive to gentamicin and 100% resistant to chloramphenicol, in addition to which all strains showed varying degrees of resistance to 13 other common antibiotics, and a large number of strains resistant to multiple antibiotics were found. A bioinformatic analysis of the expression of resistance genes in Bacillus cereus showed three classes of antibiotic-resistant genes, which were three of the six classes of antibiotics identified according to the resistance phenotype. The presence of other classes of antibiotic-resistant genes was identified from genome-wide information. Antibiotic-resistant phenotypes were analyzed for correlations with genotype, and remarkable differences were found among the phenotypes. The spread of antibiotic-resistant strains is a serious public health problem that requires the long-term monitoring of antimicrobial resistance in Bacillus cereus, and the present study provides important information for monitoring antibiotic resistance in bacteria from different types of food. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Foodborne Bacteria)
Show Figures

Figure 1

17 pages, 3761 KiB  
Article
Contamination of Plant Foods with Bacillus cereus in a Province and Analysis of Its Traceability
by Yingting Lin, Xiaoyan Cha, Charles Brennan, Jianxin Cao and Ying Shang
Microorganisms 2023, 11(11), 2763; https://doi.org/10.3390/microorganisms11112763 - 14 Nov 2023
Viewed by 1119
Abstract
Bacillus cereus is an important zoonotic foodborne conditional pathogen. It is found in vegetables, dairy products, rice, and other foods, thereby greatly endangering human health. Investigations on B. cereus contamination in China primarily focus on raw milk, dairy products, meat, and others, and [...] Read more.
Bacillus cereus is an important zoonotic foodborne conditional pathogen. It is found in vegetables, dairy products, rice, and other foods, thereby greatly endangering human health. Investigations on B. cereus contamination in China primarily focus on raw milk, dairy products, meat, and others, and limited research has been conducted on plant-based foodstuffs. The rapid development of sequencing technology and the application of bioinformatics-related techniques means that analysis based on whole-genome sequencing has become an important tool for the molecular-epidemiology investigation of B. cereus. In this study, we investigated the contamination of B. cereus in six types of commercially available plant foods from eight regions of a province. The molecular epidemiology of the isolated B. cereus was analyzed by whole-genome sequencing. We aimed to provide fundamental data for the surveillance and epidemiology analysis of B. cereus in food products in China. The rapid traceability system of B. cereus established in this study can provide a basis for rapid molecular epidemiology analysis of B. cereus, as well as for the prevention and surveillance of B. cereus. Moreover, it can also be expanded to monitoring and rapid tracing of more foodborne pathogens. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Foodborne Bacteria)
Show Figures

Figure 1

16 pages, 3180 KiB  
Article
Evaluation of Enterotoxins and Antimicrobial Resistance in Microorganisms Isolated from Raw Sheep Milk and Cheese: Ensuring the Microbiological Safety of These Products in Southern Brazil
by Creciana M. Endres, Eliana Moreira, Andressa B. de Freitas, Andréia P. Dal Castel, Fábio Graciano, Michele B. Mann, Ana Paula G. Frazzon, Fabiana Q. Mayer and Jeverson Frazzon
Microorganisms 2023, 11(6), 1618; https://doi.org/10.3390/microorganisms11061618 - 20 Jun 2023
Cited by 2 | Viewed by 1444
Abstract
This study emphasizes the importance of monitoring the microbiological quality of animal products, such as raw sheep’s milk and cheese, to ensure food safety. In Brazil, there is currently no legislation governing the quality of sheep’s milk and its derivatives. Therefore, this study [...] Read more.
This study emphasizes the importance of monitoring the microbiological quality of animal products, such as raw sheep’s milk and cheese, to ensure food safety. In Brazil, there is currently no legislation governing the quality of sheep’s milk and its derivatives. Therefore, this study aimed to evaluate: (i) the hygienic-sanitary quality of raw sheep’s milk and cheese produced in southern Brazil; (ii) the presence of enterotoxins and Staphylococcus spp. in these products; and (iii) the susceptibility of the isolated Staphylococcus spp. to antimicrobial drugs and the presence of resistance genes. A total of 35 samples of sheep’s milk and cheese were examined. The microbiological quality and presence of enterotoxins were accessed using Petrifilm and VIDAS SET2 methods, respectively. Antimicrobial susceptibility tests were conducted using VITEK 2 equipment and the disc diffusion method. The presence of resistance genes tet(L), sul1, sul2, ermB, tetM, AAC(6)’, tetW, and strA were evaluated through PCR. In total, 39 Staphylococcus spp. were obtained. The resistance genes tetM, ermB, strA, tetL, sul1, AAC(6)’, and sul2 were detected in 82%, 59%, 36%, 28%, 23%, 3%, and 3% of isolates, respectively. The findings revealed that both raw sheep’s milk and cheese contained Staphylococcus spp. that exhibited resistance to antimicrobial drugs and harbored resistance genes. These results underscore the immediate need for specific legislation in Brazil to regulate the production and sale of these products. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Foodborne Bacteria)
Show Figures

Figure 1

13 pages, 3224 KiB  
Article
Emergence of a Hybrid IncI1-Iα Plasmid-Encoded blaCTX-M-101 Conferring Resistance to Cephalosporins in Salmonella enterica Serovar Enteritidis
by Xiaojie Qin and Zengfeng Zhang
Microorganisms 2023, 11(5), 1275; https://doi.org/10.3390/microorganisms11051275 - 12 May 2023
Cited by 1 | Viewed by 1140
Abstract
The increasing resistance to cephalosporins in Salmonella poses a serious threat to public health. In our previous study, the blaCTX-M-101 gene, a new blaCTX-M variant, was first reported in Salmonella enterica serovar Enteritidis (S. Enteritidis). Here, we further analyzed the genome [...] Read more.
The increasing resistance to cephalosporins in Salmonella poses a serious threat to public health. In our previous study, the blaCTX-M-101 gene, a new blaCTX-M variant, was first reported in Salmonella enterica serovar Enteritidis (S. Enteritidis). Here, we further analyzed the genome characterization, transferability, and resistance mechanism of one S. Enteritidis isolate (SJTUF14523) carrying blaCTX-M-101 from an outpatient in 2016 in Xinjiang, China. This strain was a multidrug resistance (MDR) isolate and exhibited resistance to ceftazidime (MIC = 64 μg/mL), cefotaxime (MIC = 256 μg/mL), and cefepime (MIC = 16 μg/mL). Phylogenetic analysis revealed that SJTUF14523 had a close relationship to another S. Enteritidis isolate from the United States. In the presence of plasmid p14523A, there were 8- and 2133-fold increases in the MICs of cephalosporins in Escherichia coli C600 in the conjugation. Gene cloning results indicated that blaCTX-M-101 was the decisive mechanism leading to ceftazidime and cefotaxime resistance that could make the MICs break through the resistance breakpoint. Plasmid sequencing revealed that the blaCTX-M-101 gene was located on an IncI1-Iα transferable plasmid (p14523A) that was 85,862 bp in length. Sequence comparison showed that p14523A was a novel hybrid plasmid that might have resulted from the interaction between a homologous region. Furthermore, we found a composite transposon unit composed of ISEcp1, blaCTX-M-101, and orf477 in p14523A. ISEcp1-mediated transposition was likely to play a key role in the horizontal transfer of blaCTX-M-101 among plasmids in S. Enteritidis. Collectively, these findings underline further challenges in the prevention and control of antibiotic resistance posed by new CTX-M-101-like variants in Salmonella. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Foodborne Bacteria)
Show Figures

Figure 1

16 pages, 5000 KiB  
Article
Antibiotic-Resistant Bacteria, Antimicrobial Resistance Genes, and Antibiotic Residue in Food from Animal Sources: One Health Food Safety Concern
by Muhammad Usman Qamar, Aatika, Muhammad Ismail Chughtai, Hasan Ejaz, Bi Bi Zainab Mazhari, Uzma Maqbool, Awadh Alanazi, Yasir Alruwaili and Kashaf Junaid
Microorganisms 2023, 11(1), 161; https://doi.org/10.3390/microorganisms11010161 - 08 Jan 2023
Cited by 14 | Viewed by 4593
Abstract
Antibiotic-resistant bacteria causing foodborne serious illnesses can be found in contaminated food. Therefore, this study aimed to identify the pathogens, genes, and antimicrobial residues present in raw milk and meat. We collected 40 raw milk and 40 beef samples using the aseptic method [...] Read more.
Antibiotic-resistant bacteria causing foodborne serious illnesses can be found in contaminated food. Therefore, this study aimed to identify the pathogens, genes, and antimicrobial residues present in raw milk and meat. We collected 40 raw milk and 40 beef samples using the aseptic method from various parts of the Faisalabad metropolis, Pakistan. The samples were cultured on blood, MacConkey, and UTI chrome agar. The VITEK 2 compact system was used for microbial identification and determination of minimum inhibitory concentrations. Antimicrobial resistance genes for extended-spectrum β-lactamases, methicillin resistance in Staphylococcus aureus, and carbapenem resistance were identified using molecular techniques. ELISA was used to determine the tetracycline residue level in each sample. The beef samples showed polymicrobial contamination with 64 bacterial isolates, with Escherichia coli (29; 45.3%) and Klebsiella pneumoniae (11; 17.1%) predominating. The milk samples showed polymicrobial contamination with 73 bacterial isolates, with E. coli (22; 30%), K. pneumoniae (12; 16.4%), and S. aureus (10; 13.6%) forming the majority. Twenty-eight (43.7%) isolates from beef harbored tet genes, nineteen (29.6%) blaCTX-M, and fourteen (21.8%) blaNDM-1, and twenty-six (35.6%) isolates from milk harbored tet genes, nineteen (26%) blaTEM and blaCTX-M, and three (4%) blaNDM-1. Twenty-two (55%) each of the beef and milk samples exceeded the maximum residue limit for tetracycline. Polymicrobial contamination by bacteria possessing blaCTX-M, blaTEM, blaNDM-1, blaOXA, mecA, and tet genes was identified in food samples. The high tetracycline residue levels pose a serious health risk to consumers. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Foodborne Bacteria)
Show Figures

Figure 1

Back to TopTop