materials-logo

Journal Browser

Journal Browser

Advances in Development and Characterization of Polyurethane Foams

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Polymeric Materials".

Deadline for manuscript submissions: 10 June 2024 | Viewed by 4032

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry and Technology of Polymers, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
Interests: polyurethane; foam; biopolyol; chemical recycling; renewable resources

Special Issue Information

Dear Colleagues,

Polyurethanes are a broad group of polymeric materials. Depending on the type of raw materials and the method of formulation, they can be used to manufacture elastomers, rigid, flexible and viscoelastic foams, adhesives, coatings and solid materials. Polyurethanes are used in the automotive industry, as well as in construction, furniture and medicine due to their specific properties, which can be achieved using different raw materials.

Foams are the most important commercial polyurethane products. The properties of polyurethane foams are highly dependent on their polymer matrix and cell structure, allowing the material to be modified according to the intended application.

Considering current trends and regulations, it is important to be aware of the environmental impact of polyurethanes. Currently, the polyurethane industry is heavily dependent on crude oil, as the most important substrates for their production. Innovative development, in line with the ideas of a circular economy and clean production, requires the implementation of new solutions for the synthesis of biocomponents for polyurethanes and an emphasis on the use of not only renewable, but also waste and recycled raw materials.

The subject of polyurethane foams is very broad and often interdisciplinary. Therefore, due to potential innovations and future developments, we are pleased to initiate this Special Issue and invite you to submit your original research papers and reviews related to the development and characterization of polyurethane foams.

Dr. Elżbieta Malewska
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • rigid polyurethane foam
  • flexible polyurethane foam
  • viscoelastic polyurethane foam
  • polyurethane composite
  • renewable resources for polyurethane
  • biopolyol
  • chemical recycling
  • properties
  • application

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 4525 KiB  
Article
Synthesis and Characterization of Flame Retarded Rigid Polyurethane Foams with Different Types of Blowing Agents
by Marcin Zemła, Sławomir Michałowski and Aleksander Prociak
Materials 2023, 16(22), 7217; https://doi.org/10.3390/ma16227217 - 17 Nov 2023
Viewed by 691
Abstract
In this study, rigid polyurethane foams modified with non-halogenated flame retardant were obtained. The foams were synthesized using two systems containing different blowing agents. In the first one, cyclopentane and water were used as a mixture of blowing agents, and in the second [...] Read more.
In this study, rigid polyurethane foams modified with non-halogenated flame retardant were obtained. The foams were synthesized using two systems containing different blowing agents. In the first one, cyclopentane and water were used as a mixture of blowing agents, and in the second one, only water was used as a chemical blowing agent. The systems were modified with the additive phosphorus flame retardant Roflam F5. The obtained modified foams were tested for their flammability and basic properties, such as apparent density, closed-cell contents and analyses of the cell structures, thermal conductivity, mechanical properties, and water absorption. Increasing the content of Roflam F5 caused a decrease in temperature during the combustion of the material and extended the burning time. The addition of 1.0 wt.% phosphorus derived from Roflam F5 caused the modified rigid polyurethane foam to become a self-extinguishing material. The increase in the content of Roflam F5 caused a decrease in the total heat release and the maximum heat release rate during the pyrolysis combustion flow calorimetry. The foams with the highest content of flame retardant and foamed with a chemical-physical and chemical blowing agent had a lower total heat release by 19% and 11%, respectively, compared to reference foams. Full article
(This article belongs to the Special Issue Advances in Development and Characterization of Polyurethane Foams)
Show Figures

Figure 1

16 pages, 10763 KiB  
Article
Influence of Long-Term Storage and UV Light Exposure on Characteristics of Polyurethane Foams for Cryogenic Insulation
by Beatrise Sture, Vladimir Yakushin, Laima Vevere and Ugis Cabulis
Materials 2023, 16(22), 7071; https://doi.org/10.3390/ma16227071 - 07 Nov 2023
Viewed by 781
Abstract
Rigid polyurethane (PUR) foams have been the most effective insulation material used in space launchers since the beginning of cryogenic fuel use, due to their outstanding thermal and mechanical properties. In this study, spray-applied PUR foams using different ratios of amine-based catalysts were [...] Read more.
Rigid polyurethane (PUR) foams have been the most effective insulation material used in space launchers since the beginning of cryogenic fuel use, due to their outstanding thermal and mechanical properties. In this study, spray-applied PUR foams using different ratios of amine-based catalysts were produced. Due to climate change, several restrictions have been made regarding the usage of blowing agents used for PUR foam production. Lately, hydrofluoroolefins (HFOs) have been suggested as an alternative for PUR foam production due to their low global warming potential (GWP) and ozone depletion potential (ODP), replacing the hydrofluorocarbons (HFCs) so far used. This change in blowing agents naturally altered the usage of catalysts. Reactive amine-based catalysts are less hazardous because of their low volatility and ability to react successfully with isocyanate or polyols. Spray-applied PUR foams with a potential application for cryogenic insulation were produced and tested for long-term storage, analyzing parameters such as the pH value of polyol composition, foaming kinetics (trise, tcream), etc. Athermal analysis (TG, DSC) was also applied to developed materials, as well as artificial ageing by exposing samples to UV light. It was discovered that PUR foams obtained using reactive amine-based catalysts, such as Polycat 203 and 218, have a higher integral heat capacity, but polyol mixtures containing these catalysts cannot exceed a storage time of more than 4 months. It was also observed from artificial ageing tests of PUR cryogenic insulation by exposure to UV light that the thickness of the degraded layer reached 0.8 mm (after 1000 h), but no significant destruction of cellular structure deeper in the material was observed. Full article
(This article belongs to the Special Issue Advances in Development and Characterization of Polyurethane Foams)
Show Figures

Figure 1

21 pages, 6351 KiB  
Article
From Bioresources to Thermal Insulation Materials: Synthesis and Properties of Two-Component Open-Cell Spray Polyurethane Foams Based on Bio-Polyols from Used Cooking Oil
by Krzysztof Polaczek, Maria Kurańska, Elżbieta Malewska, Małgorzata Czerwicka-Pach and Aleksander Prociak
Materials 2023, 16(18), 6139; https://doi.org/10.3390/ma16186139 - 09 Sep 2023
Cited by 1 | Viewed by 1039
Abstract
Open-cell spray polyurethane foams are widely used as highly efficient thermal insulation materials with vapor permeability and soundproofing properties. Unfortunately, for the production of commercial foams, mainly non-renewable petrochemical raw materials are used. The aim of this study was to determine the possibility [...] Read more.
Open-cell spray polyurethane foams are widely used as highly efficient thermal insulation materials with vapor permeability and soundproofing properties. Unfortunately, for the production of commercial foams, mainly non-renewable petrochemical raw materials are used. The aim of this study was to determine the possibility of completely replacing petrochemical polyols (the main raw material used in the synthesis of polyurethanes, alongside isocyanates) with bio-polyols obtained from used cooking oils, classified as waste materials. The research consisted of three stages: the synthesis of bio-polyols, the development of polyurethane foam systems under laboratory conditions, and the testing of developed polyurethane spray systems under industrial conditions. The synthesis of the bio-polyols was carried out by using two different methods: a one-step transesterification process using triethanolamine and a two-step process of epoxidation and opening oxirane rings with diethylene glycol. The obtained bio-polyols were analyzed using gel chromatography and nuclear magnetic resonance spectroscopy. The developed polyurethane foam formulations included two types of fire retardants: halogenated tris(1-chloro-2-propyl) phosphate (TCPP) and halogen-free triethyl phosphate (TEP). In the formulations of polyurethane systems, reactive amine catalysts were employed, which become incorporated into the polymer matrix during foaming, significantly reducing their emission after application. The foams were manufactured on both a laboratory and industrial scale using high-pressure spray machines under conditions recommended by commercial system manufacturers: spray pressure 80–100 bar, component temperature 45–52 °C, and component volumetric ratio 1:1. The open-cell foams had apparent densities 14–21.5 kg/m3, thermal conductivity coefficients 35–38 mW/m∙K, closed-cell contents <5%, water vapor diffusion resistance factors (μ) <6, and limiting oxygen indexes 21.3–21.5%. The properties of the obtained foams were comparable to commercial materials. The developed polyurethane spray systems can be used as thermal insulation materials for insulating interior walls, attics, and ceilings. Full article
(This article belongs to the Special Issue Advances in Development and Characterization of Polyurethane Foams)
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 1656 KiB  
Review
Recycled Waste as Polyurethane Additives or Fillers: Mini-Review
by Edyta Pęczek, Renata Pamuła and Andrzej Białowiec
Materials 2024, 17(5), 1013; https://doi.org/10.3390/ma17051013 - 22 Feb 2024
Viewed by 1136
Abstract
The intensive development of the polyurethanes industry and limited resources (also due to the current geopolitical situation) of the raw materials used so far force the search for new solutions to maintain high economic development. Implementing the principles of a circular economy is [...] Read more.
The intensive development of the polyurethanes industry and limited resources (also due to the current geopolitical situation) of the raw materials used so far force the search for new solutions to maintain high economic development. Implementing the principles of a circular economy is an approach aimed at reducing the consumption of natural resources in PU production. This is understood as a method of recovery, including recycling, in which waste is processed into PU, and then re-used and placed on the market in the form of finished sustainable products. The effective use of waste is one of the attributes of the modern economy. Around the world, new ways to process or use recycled materials for polyurethane production are investigated. That is why innovative research is so important, in which development may change the existing thinking about the form of waste recovery. The paper presents the possibilities of recycling waste (such as biochar, bagasse, waste lignin, residual algal cellulose, residual pineapple cellulose, walnut shells, silanized walnut shells, basalt waste, eggshells, chicken feathers, turkey feathers, fiber, fly ash, wood flour, buffing dust, thermoplastic elastomers, thermoplastic polyurethane, ground corncake, Tetra Pak®, coffee grounds, pine seed shells, yerba mate, the bark of Western Red Cedar, coconut husk ash, cuttlebone, glass fibers and mussel shell) as additives or fillers in the formulation of polyurethanes, which can partially or completely replace petrochemical raw materials. Numerous examples of waste applications of one-component polyurethanes have been given. A new unexplored niche for the research on waste recycling for the production of two components has been identified. Full article
(This article belongs to the Special Issue Advances in Development and Characterization of Polyurethane Foams)
Show Figures

Figure 1

Back to TopTop