Functional Biomaterials and Biomaterial Composites with Antimicrobial Properties

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983). This special issue belongs to the section "Antibacterial Biomaterials".

Deadline for manuscript submissions: closed (15 October 2022) | Viewed by 35042

Special Issue Editor

Special Issue Information

Dear Colleagues,

In the pursuit of effective treatment of life-threatening bacterial and fungal infections by multi-drug resistant pathogens, new antimicrobial agents with high specificity and bioavailability, together with low toxicity, are urgently needed. Various multidrug-resistant strains are not only confined in hospital settings but are also present in foods owing to the extensive use of antibiotics in livestock. Deadly pathogens are attributed to infections of the bloodstream, respiratory and urinary tracts, burn, wounds, and the nervous system. Thanks to biomaterials or natural compounds from plants, animals, and microorganisms, these biomaterials exhibit antimicrobial properties and are non-toxic to human cells. Antibiotics often perform better in the presence of natural products. The synergistic effect of natural products and antibiotics has been exemplified by the binding of bacterial enzymes by curcumin, thereby reducing the lysis and hydrolysis of antibiotics by bacteria. Bacteria are also a good source of antibiotics as about two-thirds of all naturally derived antibiotics currently have been used in human medicine and veterinary medicine. Polymers with intrinsic antimicrobial properties are polylysine, chitosan/chitin, polyaniline, polypyrrole, etc. Other polymers, however, require the attachment or entrapment of an antimicrobial moiety. Polymers also form polymer composites with metallic nanoparticles, such as silver, copper, zinc, titanium dioxide, etc., resulting in enhanced antimicrobial activities.

This Special Issue advocates the development of functional biomaterials with antimicrobial properties as the prevalence of antibiotic-resistant pathogens is a serious concern. The subject will cover the potential uses of polymers, copolymers, polymer composites with nanoparticles, and complexes of polymers and natural products.  Natural products can stem from plants (e.g., terpenes, polyphenols with low molecular weight, diferuloylmethane (curcumin), essential oils, etc.), animals (arenicins), a group of peptides, chitosan and its derivatives, seroins (low molecular weight proteins produced by Bombyx mori), and microorganisms (e.g., aminoglycosides). The topics of interest also include applications of functional biomaterials in medicine, health care, water treatment, and food packaging. The Special Issue also covers the potential use of nanocarriers to improve their pharmacokinetics and reduce toxicity owing to the controlled release of therapeutic agents at the target site.

This Special Issue encourages the submission of your most creative work that has the potential to advance antimicrobial activities at varying scales. To all potential authors of this Special Issue, JFB looks forward to receiving your submissions and working with you.

Prof. Dr. John H.T. Luong
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antimicrobial
  • antibiotics
  • polymers
  • polymer composites
  • natural products
  • biomaterials
  • nano particles

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 2835 KiB  
Article
Optimization of Whey Protein-Based Films Incorporating Foeniculum vulgare Mill. Essential Oil
by Salomé Pedro, Luísa Pereira, Fernanda Domingues, Ana Ramos and Ângelo Luís
J. Funct. Biomater. 2023, 14(3), 121; https://doi.org/10.3390/jfb14030121 - 23 Feb 2023
Cited by 6 | Viewed by 2074
Abstract
Petroleum-based plastics used in food packaging are not biodegradable. They accumulate in the environment in large amounts, causing a decrease in soil fertility, jeopardizing marine habitats, and causing serious problems to human health. Whey protein has been studied for applications in food packaging, [...] Read more.
Petroleum-based plastics used in food packaging are not biodegradable. They accumulate in the environment in large amounts, causing a decrease in soil fertility, jeopardizing marine habitats, and causing serious problems to human health. Whey protein has been studied for applications in food packaging, either because of its abundant availability or because it confers transparency, flexibility, and good barrier properties to packaging materials. Taking advantage of whey protein to produce new food packaging materials is a clear example of the so-called circular economy. The present work focuses on optimizing the formulation of whey protein concentrate-based films to enhance their general mechanical properties applying the Box–Behnken experimental design. Foeniculum vulgare Mill. (fennel) essential oil (EO) was incorporated into the optimized films, which were then further characterized. The incorporation of fennel EO in the films leads to a significant increase (p < 0.05) in peak elongation (from 14.03 to 31.61%) and tensile index (from 0.40 to 0.50 N.m/g). The optimized whey protein films were yellowish and very transparent (>90%). The results of the bioactive activities of the optimized films showed their ability to be applied as active materials for food packaging to improve the shelf-life of food products and also to prevent foodborne diseases associated with the growth of pathogenic microorganisms. Full article
Show Figures

Figure 1

18 pages, 7599 KiB  
Article
Antibacterial Activity and Cell Viability of Biomimetic Magnesian Calcite Coatings on Biodegradable Mg
by Monica Popa, Mihai Anastasescu, Laura M. Stefan, Ana-Maria Prelipcean and Jose Calderon Moreno
J. Funct. Biomater. 2023, 14(2), 98; https://doi.org/10.3390/jfb14020098 - 10 Feb 2023
Cited by 2 | Viewed by 1840
Abstract
Mg is a material of choice for biodegradable implants. The main challenge for using Mg in temporary implants is to provide protective surfaces that mitigate its rapid degradation in biological fluids and also confer sufficient cytocompatibility and bacterial resistance to Mg-coated surfaces. Even [...] Read more.
Mg is a material of choice for biodegradable implants. The main challenge for using Mg in temporary implants is to provide protective surfaces that mitigate its rapid degradation in biological fluids and also confer sufficient cytocompatibility and bacterial resistance to Mg-coated surfaces. Even though carbonate mineralization is the most important source of biominerals, such as the skeletons and shells of many marine organisms, there has been little success in the controlled growth of carbonate layers by synthetic processes. We present here the formation mechanism, antibacterial activity, and cell viability of magnesian calcite biomimetic coatings grown on biodegradable Mg via a green, one-step route. Cell compatibility assessment showed cell viability higher than 80% after 72 h using fibroblast cells (NCTC, clone L929) and higher than 60% after 72 h using human osteoblast-like cells (SaOS-2); the cells displayed a normal appearance and a density similar to the control sample. Antimicrobial potential evaluation against both Gram-positive (Staphylococcus aureus (ATCC 25923)) and Gram-negative (Pseudomonas aeruginosa (ATCC 27853)) strains demonstrated that the coated samples significantly inhibited bacterial adhesion and biofilm formation compared to the untreated control. Calcite coatings grown on biodegradable Mg by a single coating process showed the necessary properties of cell compatibility and bacterial resistance for application in surface-modified Mg biomaterials for temporary implants. Full article
Show Figures

Figure 1

32 pages, 20336 KiB  
Article
Pepper-Mediated Green Synthesis of Selenium and Tellurium Nanoparticles with Antibacterial and Anticancer Potential
by Veer Shah, David Medina-Cruz, Ada Vernet-Crua, Linh B. Truong, Eduardo Sotelo, Ebrahim Mostafavi, María Ujué González, José Miguel García-Martín, Jorge L. Cholula-Díaz and Thomas J. Webster
J. Funct. Biomater. 2023, 14(1), 24; https://doi.org/10.3390/jfb14010024 - 31 Dec 2022
Cited by 9 | Viewed by 3284
Abstract
The production of nanoparticles for biomedical applications (namely with antimicrobial and anticancer properties) has been significantly hampered using traditional physicochemical approaches, which often produce nanostructures with poor biocompatibility properties requiring post-synthesis functionalization to implement features that such biomedical applications require. As an alternative, [...] Read more.
The production of nanoparticles for biomedical applications (namely with antimicrobial and anticancer properties) has been significantly hampered using traditional physicochemical approaches, which often produce nanostructures with poor biocompatibility properties requiring post-synthesis functionalization to implement features that such biomedical applications require. As an alternative, green nanotechnology and the synthesis of environmentally friendly nanomaterials have been gaining attention over the last few decades, using living organisms or biomolecules derived from them, as the main raw materials to produce cost-effective, environmentally friendly, and ready-to-be-used nanomaterials. In this article and building upon previous knowledge, we have designed and implemented the synthesis of selenium and tellurium nanoparticles using extracts from fresh jalapeño and habanero peppers. After characterization, in this study, the nanoparticles were tested for both their antimicrobial and anticancer features against isolates of antibiotic-resistant bacterial strains and skin cancer cell lines, respectively. The nanosystems produced nanoparticles via a fast, eco-friendly, and cost-effective method showing different antimicrobial profiles between elements. While selenium nanoparticles lacked an antimicrobial effect at the concentrations tested, those made of tellurium produced a significant antibacterial effect even at the lowest concentration tested. These effects were correlated when the nanoparticles were tested for their cytocompatibility and anticancer properties. While selenium nanoparticles were biocompatible and had a dose-dependent anticancer effect, tellurium-based nanoparticles lacked such biocompatibility while exerting a powerful anti-cancer effect. Further, this study demonstrated a suitable mechanism of action for killing bacteria and cancer cells involving reactive oxygen species (ROS) generation. In summary, this study introduces a new green nanomedicine synthesis approach to create novel selenium and tellurium nanoparticles with attractive properties for numerous biomedical applications. Full article
Show Figures

Graphical abstract

17 pages, 2519 KiB  
Article
Antifungal Activity of Biosynthesized Silver Nanoparticles (AgNPs) against Aspergilli Causing Aspergillosis: Ultrastructure Study
by Amr H. Hashem, Ebrahim Saied, Basma H. Amin, Fatimah O. Alotibi, Abdulaziz A. Al-Askar, Amr A. Arishi, Fathy M. Elkady and Mostafa A. Elbahnasawy
J. Funct. Biomater. 2022, 13(4), 242; https://doi.org/10.3390/jfb13040242 - 15 Nov 2022
Cited by 31 | Viewed by 3515
Abstract
Currently, nanoparticles and nanomaterials are widely used for biomedical applications. In the present study, silver nanoparticles (AgNPs) were successfully biosynthesized using a cell-free extract (CFE) of Bacillus thuringiensis MAE 6 through a green and ecofriendly method. The size of the biosynthesized AgNPs was [...] Read more.
Currently, nanoparticles and nanomaterials are widely used for biomedical applications. In the present study, silver nanoparticles (AgNPs) were successfully biosynthesized using a cell-free extract (CFE) of Bacillus thuringiensis MAE 6 through a green and ecofriendly method. The size of the biosynthesized AgNPs was 32.7 nm, and their crystalline nature was confirmed by XRD, according to characterization results. A surface plasmon resonance spectrum of AgNPs was obtained at 420 nm. Nanoparticles were further characterized using DLS and FTIR analyses, which provided information on their size, stability, and functional groups. AgNPs revealed less cytotoxicity against normal Vero cell line [IC50 = 155 μg/mL]. Moreover, the biosynthesized AgNPs exhibited promising antifungal activity against four most common Aspergillus, including Aspergillus niger, A. terreus, A. flavus, and A. fumigatus at concentrations of 500 μg/mL where inhibition zones were 16, 20, 26, and 19 mm, respectively. In addition, MICs of AgNPs against A. niger, A. terreus, A. flavus, and A. fumigatus were 125, 62.5, 15.62, and 62.5 μg/mL, respectively. Furthermore, the ultrastructural study confirmed the antifungal effect of AgNPs, where the cell wall’s integrity and homogeneity were lost; the cell membrane had separated from the cell wall and had intruded into the cytoplasm. In conclusion, the biosynthesized AgNPs using a CFE of B. thuringiensis can be used as a promising antifungal agent against Aspergillus species causing Aspergillosis. Full article
Show Figures

Figure 1

27 pages, 3718 KiB  
Article
Escherichia coli Biofilm Formation, Motion and Protein Patterns on Hyaluronic Acid and Polydimethylsiloxane Depend on Surface Stiffness
by Annabelle Vigué, Dominique Vautier, Amad Kaytoue, Bernard Senger, Youri Arntz, Vincent Ball, Amine Ben Mlouka, Varvara Gribova, Samar Hajjar-Garreau, Julie Hardouin, Thierry Jouenne, Philippe Lavalle and Lydie Ploux
J. Funct. Biomater. 2022, 13(4), 237; https://doi.org/10.3390/jfb13040237 - 11 Nov 2022
Viewed by 2067
Abstract
The surface stiffness of the microenvironment is a mechanical signal regulating biofilm growth without the risks associated with the use of bioactive agents. However, the mechanisms determining the expansion or prevention of biofilm growth on soft and stiff substrates are largely unknown. To [...] Read more.
The surface stiffness of the microenvironment is a mechanical signal regulating biofilm growth without the risks associated with the use of bioactive agents. However, the mechanisms determining the expansion or prevention of biofilm growth on soft and stiff substrates are largely unknown. To answer this question, we used PDMS (polydimethylsiloxane, 9–574 kPa) and HA (hyaluronic acid gels, 44 Pa–2 kPa) differing in their hydration. We showed that the softest HA inhibited Escherichia coli biofilm growth, while the stiffest PDMS activated it. The bacterial mechanical environment significantly regulated the MscS mechanosensitive channel in higher abundance on the least colonized HA-44Pa, while Type-1 pili (FimA) showed regulation in higher abundance on the most colonized PDMS-9kPa. Type-1 pili regulated the free motion (the capacity of bacteria to move far from their initial position) necessary for biofilm growth independent of the substrate surface stiffness. In contrast, the total length travelled by the bacteria (diffusion coefficient) varied positively with the surface stiffness but not with the biofilm growth. The softest, hydrated HA, the least colonized surface, revealed the least diffusive and the least free-moving bacteria. Finally, this shows that customizing the surface elasticity and hydration, together, is an efficient means of affecting the bacteria’s mobility and attachment to the surface and thus designing biomedical surfaces to prevent biofilm growth. Full article
Show Figures

Graphical abstract

16 pages, 2121 KiB  
Article
Long-Term Antimicrobial Performance of Textiles Coated with ZnO and TiO2 Nanoparticles in a Tropical Climate
by Varvara O. Veselova, Vladimir A. Plyuta, Andrei N. Kostrov, Darya N. Vtyurina, Vladimir O. Abramov, Anna V. Abramova, Yury I. Voitov, Darya A. Padiy, Vo Thi Hoai Thu, Le Thi Hue, Dinh Thi Thu Trang, Alexander E. Baranchikov, Inessa A. Khmel, Victor A. Nadtochenko and Vladimir K. Ivanov
J. Funct. Biomater. 2022, 13(4), 233; https://doi.org/10.3390/jfb13040233 - 09 Nov 2022
Cited by 5 | Viewed by 2119
Abstract
This paper reports the results of the large-scale field testing of composite materials with antibacterial properties in a tropical climate. The composite materials, based on a cotton fabric with a coating of metal oxide nanoparticles (TiO2 and/or ZnO), were produced using high-power [...] Read more.
This paper reports the results of the large-scale field testing of composite materials with antibacterial properties in a tropical climate. The composite materials, based on a cotton fabric with a coating of metal oxide nanoparticles (TiO2 and/or ZnO), were produced using high-power ultrasonic treatment. The antibacterial properties of the materials were studied in laboratory tests on solid and liquid nutrient media using bacteria of different taxonomic groups (Escherichia coli, Chromobacterium violaceum, Pseudomonas chlororaphis). On solid media, the coatings were able to achieve a >50% decrease in the number of bacteria. The field tests were carried out in a tropical climate, at the Climate test station “Hoa Lac” (Hanoi city, Vietnam). The composite materials demonstrated long-term antibacterial activity in the tropical climate: the number of microorganisms remained within the range of 1–3% in comparison with the control sample for the duration of the experiment (3 months). Ten of the microorganisms that most frequently occurred on the surface of the coated textiles were identified. The bacteria were harmless, while the fungi were pathogenic and contributed to fabric deterioration. Tensile strength deterioration was also studied, with the fabrics coated with metal oxides demonstrating a better preservation of their mechanical characteristics over time, (there was a 42% tensile strength decrease for the reference non-coated sample and a 21% decrease for the sample with a ZnO + CTAB coating). Full article
Show Figures

Figure 1

17 pages, 7213 KiB  
Article
Unveiling Antimicrobial and Insecticidal Activities of Biosynthesized Selenium Nanoparticles Using Prickly Pear Peel Waste
by Amr H. Hashem, Tharwat A. Selim, Mohammed H. Alruhaili, Samy Selim, Dalal Hussien M. Alkhalifah, Soad K. Al Jaouni and Salem S. Salem
J. Funct. Biomater. 2022, 13(3), 112; https://doi.org/10.3390/jfb13030112 - 02 Aug 2022
Cited by 49 | Viewed by 3530
Abstract
In the current study, prickly pear peel waste (PPPW) extract was used for the biosynthesis of selenium nanoparticles through a green and eco-friendly method for the first time. The biosynthesized SeNPs were characterized using UV-Vis, XRD, FTIR, TEM, SEM, EDX, and mapping. Characterization [...] Read more.
In the current study, prickly pear peel waste (PPPW) extract was used for the biosynthesis of selenium nanoparticles through a green and eco-friendly method for the first time. The biosynthesized SeNPs were characterized using UV-Vis, XRD, FTIR, TEM, SEM, EDX, and mapping. Characterization results revealed that biosynthesized SeNPs were spherical, polydisperse, highly crystalline, and had sizes in the range of 10–87.4 nm. Antibacterial, antifungal, and insecticidal activities of biosynthesized SeNPs were evaluated. Results revealed that SeNPs exhibited promising antibacterial against Gram negative (E. coli and P. aeruginosa) and Gram positive (B. subtilis and S. aureus) bacteria where MICs were 125, 125, 62.5, and 15.62 µg/mL, respectively. Moreover, SeNPs showed potential antifungal activity toward Candida albicans and Cryptococcus neoformans where MICs were 3.9 and 7.81 µg/mL, respectively. Furthermore, tested crud extract and SeNPs severely induced larvicidal activity for tested mosquitoes with LC50 and LC90 of 219.841, 950.087 mg/L and 75.411, 208.289 mg/L, respectively. The fecundity and hatchability of C. pipiens mosquito were significantly decreased as applied concentrations increased either for the crude or the fabricated SeNPs extracts. In conclusion, the biosynthesized SeNPs using prickly pear peel waste have antibacterial, antifungal, and insecticidal activities, which can be used in biomedical and environmental applications. Full article
Show Figures

Figure 1

Review

Jump to: Research

30 pages, 4059 KiB  
Review
Progress of Electrospun Nanofibrous Carriers for Modifications to Drug Release Profiles
by Ying Wang, Deng-Guang Yu, Yang Liu and Ya-Nan Liu
J. Funct. Biomater. 2022, 13(4), 289; https://doi.org/10.3390/jfb13040289 - 09 Dec 2022
Cited by 69 | Viewed by 4589
Abstract
Electrospinning is an advanced technology for the preparation of drug-carrying nanofibers that has demonstrated great advantages in the biomedical field. Electrospun nanofiber membranes are widely used in the field of drug administration due to their advantages such as their large specific surface area [...] Read more.
Electrospinning is an advanced technology for the preparation of drug-carrying nanofibers that has demonstrated great advantages in the biomedical field. Electrospun nanofiber membranes are widely used in the field of drug administration due to their advantages such as their large specific surface area and similarity to the extracellular matrix. Different electrospinning technologies can be used to prepare nanofibers of different structures, such as those with a monolithic structure, a core–shell structure, a Janus structure, or a porous structure. It is also possible to prepare nanofibers with different controlled-release functions, such as sustained release, delayed release, biphasic release, and targeted release. This paper elaborates on the preparation of drug-loaded nanofibers using various electrospinning technologies and concludes the mechanisms behind the controlled release of drugs. Full article
Show Figures

Figure 1

32 pages, 1874 KiB  
Review
State-of-the-Art on the Sulfate Radical-Advanced Oxidation Coupled with Nanomaterials: Biological and Environmental Applications
by Sijia Li, Manlin Qi, Qijing Yang, Fangyu Shi, Chengyu Liu, Juanrui Du, Yue Sun, Chunyan Li and Biao Dong
J. Funct. Biomater. 2022, 13(4), 227; https://doi.org/10.3390/jfb13040227 - 07 Nov 2022
Cited by 2 | Viewed by 1857
Abstract
Sulfate radicals (SO4·) play important biological roles in biomedical and environmental engineering, such as antimicrobial, antitumor, and disinfection. Compared with other common free radicals, it has the advantages of a longer half-life and higher oxidation potential, which could bring unexpected [...] Read more.
Sulfate radicals (SO4·) play important biological roles in biomedical and environmental engineering, such as antimicrobial, antitumor, and disinfection. Compared with other common free radicals, it has the advantages of a longer half-life and higher oxidation potential, which could bring unexpected effects. These properties have prompted researchers to make great contributions to biology and environmental engineering by exploiting their properties. Peroxymonosulfate (PMS) and peroxydisulfate (PDS) are the main raw materials for SO4· formation. Due to the remarkable progress in nanotechnology, a large number of nanomaterials have been explored that can efficiently activate PMS/PDS, which have been used to generate SO4· for biological applications. Based on the superior properties and application potential of SO4·, it is of great significance to review its chemical mechanism, biological effect, and application field. Therefore, in this review, we summarize the latest design of nanomaterials that can effectually activate PMS/PDS to create SO4·, including metal-based nanomaterials, metal-free nanomaterials, and nanocomposites. Furthermore, we discuss the underlying mechanism of the activation of PMS/PDS using these nanomaterials and the application of SO4· in the fields of environmental remediation and biomedicine, liberating the application potential of SO4·. Finally, this review provides the existing problems and prospects of nanomaterials being used to generate SO4· in the future, providing new ideas and possibilities for the development of biomedicine and environmental remediation. Full article
Show Figures

Figure 1

13 pages, 2656 KiB  
Review
Growing Global Research Interest in Antimicrobial Peptides for Caries Management: A Bibliometric Analysis
by Olivia Lili Zhang, John Yun Niu, Iris Xiaoxue Yin, Ollie Yiru Yu, May Lei Mei and Chun Hung Chu
J. Funct. Biomater. 2022, 13(4), 210; https://doi.org/10.3390/jfb13040210 - 29 Oct 2022
Cited by 7 | Viewed by 1462
Abstract
Objective: Researchers are studying the use of antimicrobial peptides as functional biomaterials to prevent and treat dental caries. This study aims to investigate the global research interest in antimicrobial peptides for caries management. Methods: Two independent investigators systematically searched with keywords (‘Caries’ OR [...] Read more.
Objective: Researchers are studying the use of antimicrobial peptides as functional biomaterials to prevent and treat dental caries. This study aims to investigate the global research interest in antimicrobial peptides for caries management. Methods: Two independent investigators systematically searched with keywords (‘Caries’ OR ‘Dental caries’) AND (‘Antimicrobial peptide’ OR ‘AMP’ OR ‘Statherin’ OR ‘Histatin’ OR ‘Defensin’ OR ‘Cathelicidin’) on Web of Science, PubMed and Scopus. They removed duplicate publications and screened the titles and abstracts to identify relevant publications. The included publications were summarized and classified as laboratory studies, clinical trials or reviews. The citation count and citation density of the three publication types were compared using a one-way analysis of variance. The publications’ bibliometric data were analyzed using the Bibliometrix program. Results: This study included 163 publications with 115 laboratory studies (71%), 29 clinical trials (18%) and 19 reviews (11%). The number of publications per year have increased steadily since 2002. The citation densities (mean ± SD) of laboratory study publications (3.67 ± 2.73) and clinical trial publications (2.63 ± 1.85) were less than that of review articles (5.79 ± 1.27) (p = 0.002). The three publication types had no significant difference in citation count (p = 0.54). Most publications (79%, 129/163) reported the development of a novel antimicrobial peptide. China (52/163, 32%) and the US (29/163, 18%) contributed to 50% (81/163) of the publications. Conclusion: This bibliometric analysis identified an increasing trend in global interest in antimicrobial peptides for caries management since 2002. The main research topic was the development of novel antimicrobial peptides. Most publications were laboratory studies, as were the three publications with the highest citation counts. Laboratory studies had high citation counts, whereas reviews had high citation density. Full article
Show Figures

Figure 1

24 pages, 1847 KiB  
Review
Two-Dimensional Graphitic Carbon Nitride (g-C3N4) Nanosheets and Their Derivatives for Diagnosis and Detection Applications
by Mehrab Pourmadadi, Maryam Rajabzadeh-Khosroshahi, Fatemeh Saeidi Tabar, Narges Ajalli, Amirmasoud Samadi, Mahsa Yazdani, Fatemeh Yazdian, Abbas Rahdar and Ana M. Díez-Pascual
J. Funct. Biomater. 2022, 13(4), 204; https://doi.org/10.3390/jfb13040204 - 26 Oct 2022
Cited by 19 | Viewed by 5848
Abstract
The early diagnosis of certain fatal diseases is vital for preventing severe consequences and contributes to a more effective treatment. Despite numerous conventional methods to realize this goal, employing nanobiosensors is a novel approach that provides a fast and precise detection. Recently, nanomaterials [...] Read more.
The early diagnosis of certain fatal diseases is vital for preventing severe consequences and contributes to a more effective treatment. Despite numerous conventional methods to realize this goal, employing nanobiosensors is a novel approach that provides a fast and precise detection. Recently, nanomaterials have been widely applied as biosensors with distinctive features. Graphite phase carbon nitride (g-C3N4) is a two-dimensional (2D) carbon-based nanostructure that has received attention in biosensing. Biocompatibility, biodegradability, semiconductivity, high photoluminescence yield, low-cost synthesis, easy production process, antimicrobial activity, and high stability are prominent properties that have rendered g-C3N4 a promising candidate to be used in electrochemical, optical, and other kinds of biosensors. This review presents the g-C3N4 unique features, synthesis methods, and g-C3N4-based nanomaterials. In addition, recent relevant studies on using g-C3N4 in biosensors in regard to improving treatment pathways are reviewed. Full article
Show Figures

Figure 1

17 pages, 871 KiB  
Review
Antimicrobial Biomaterials for the Healing of Infected Bone Tissue: A Systematic Review of Microtomographic Data on Experimental Animal Models
by Lorena Castro Mariano, Maria Helena Raposo Fernandes and Pedro Sousa Gomes
J. Funct. Biomater. 2022, 13(4), 193; https://doi.org/10.3390/jfb13040193 - 18 Oct 2022
Cited by 4 | Viewed by 1573
Abstract
Bone tissue infection is a major clinical challenge with high morbidity and a significant healthcare burden. Therapeutic approaches are usually based on systemic antibacterial therapies, despite the potential adverse effects associated with antibiotic resistance, persistent and opportunistic infections, hypersensitivity, and toxicity issues. Most [...] Read more.
Bone tissue infection is a major clinical challenge with high morbidity and a significant healthcare burden. Therapeutic approaches are usually based on systemic antibacterial therapies, despite the potential adverse effects associated with antibiotic resistance, persistent and opportunistic infections, hypersensitivity, and toxicity issues. Most recently, tissue engineering strategies, embracing local delivery systems and antibacterial biomaterials, have emerged as a promising alternative to systemic treatments. Despite the reported efficacy in managing bacterial infection, little is known regarding the outcomes of these devices on the bone healing process. Accordingly, this systematic review aims, for the first time, to characterize the efficacy of antibacterial biomaterials/tissue engineering constructs on the healing process of the infected bone within experimental animal models and upon microtomographic characterization. Briefly, a systematic evaluation of pre-clinical studies was performed according to the PRISMA guidelines, further complemented with bias analysis and methodological quality assessments. Data reported a significant improvement in the healing of the infected bone when an antibacterial construct was implanted, compared with the control—construct devoid of antibacterial activity, particularly at longer time points. Furthermore, considering the assessment of bias, most included studies revealed an inadequate reporting methodology, which may lead to an unclear or high risk of bias and directly hinder future studies. Full article
Show Figures

Figure 1

Back to TopTop