Thermodynamic and Technical Analysis for Sustainability (Volume 3)

A special issue of Inventions (ISSN 2411-5134). This special issue belongs to the section "Inventions and Innovation in Energy and Thermal/Fluidic Science".

Deadline for manuscript submissions: 30 April 2024 | Viewed by 1049

Special Issue Editors

Dipartimento di Ingegneria dell'Ambiente, del Territorio e delle Infrastrutture, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Interests: irreversible thermodynamics; thermodynamics of biosystems; exergoeconomics; thermoeconomics; life cycle assessment; sustainability
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue follows the publication of the first and second volumes of Thermodynamic and Technical Analysis for Sustainability, which presented sixteen exciting papers.

Sustainability and sustainable development represent a present topic of investigation, with particular regard to their link to pollution, carbon dioxide emissions, and human wellbeing.

Sustainable development was introduced in the natural and environmental sciences with the aim of attracting the interest of political and business stakeholders in order to meet the needs of the present generations without compromising future ones.

Business activities play a fundamental role in the control of every stage of the value creation and production chain and thus in their impacts on the use of resources and the natural environment. On the other hand, just business activities can represent a powerful instrument to help achieve sustainability.

In recent decades, research on sustainability represents a multidisciplinary form of investigation and has continuously grown and attracted a great deal of interest.

In relation to sustainability, air, water, and soil pollution represent problems for industrialized societies. Thus, this Special Issue wishes to focus on innovative research and strategies of sustainability, with particular regard to the thermodynamic analysis of biofuel and bioplastic production, in order to respond to the abovementioned problems of pollution.

Dr. Umberto Lucia
Prof. Dr. Debora Fino
Dr. Giulia Grisolia
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inventions is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainability
  • innovation
  • biofuels
  • bioplastics
  • waste as a resource
  • measurement of sustainabilit
  • sustainable industrial processes

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 13906 KiB  
Article
Lab Scale Investigation of Gaseous Emissions, Performance and Stability of an Aviation Turbo-Engine While Running on Biodiesel Based Sustainable Aviation Fuel
Inventions 2024, 9(1), 16; https://doi.org/10.3390/inventions9010016 - 19 Jan 2024
Viewed by 791
Abstract
The research experimentally examines the viability of biodiesel obtained from pork fat (BP) as a sustainable aviation fuel (SAF) when mixed with kerosene (Ke)—Jet-A aviation fuel + 5% Aeroshell 500 oil. Various blends of biodiesel and kerosene (10, 20, and 30% vol. of [...] Read more.
The research experimentally examines the viability of biodiesel obtained from pork fat (BP) as a sustainable aviation fuel (SAF) when mixed with kerosene (Ke)—Jet-A aviation fuel + 5% Aeroshell 500 oil. Various blends of biodiesel and kerosene (10, 20, and 30% vol. of BP added in Ke) were subjected to testing in an aviation micro turbo-engine under different operational states: idle, cruise, and maximum power. During the tests, monitoring of engine parameters such as burning temperature, fuel consumption, and thrust force was conducted. The study also encompassed the calculation of crucial performance indicators like burning efficiency, thermal efficiency, and specific consumption for all fuel blends under maximum power conditions. Combustion temperatures ahead of the turbines rise with an increase in biodiesel concentration, particularly in the idle regime, without compromising engine integrity. However, for regimes 2 and 3, the temperature in front of the turbine decreases with rising biodiesel concentration, accompanied by an increase in fuel flow rate. This phenomenon is reflected in the elevated specific consumption. Notably, for regime 3, there is a noticeable rise in specific consumption, starting from S = 0.0264 kg/Nh when the turbo-engine operates solely with Ke, to S = 0.0266 kg/Nh for Ke + 10% BP, S = 0.0269 kg/Nh for Ke + 20% BP, and S = 0.0275 kg/Nh for Ke + 30% BP. Physical–chemical properties of the blends, encompassing density, viscosity, flash point, and calorific power, were determined. Furthermore, elemental analysis and FTIR were used for chemical composition determination. The amount of CO2 produced during the stoichiometric combustion reaction with air showed variations. Initially, when using only Ke, it amounted to 3.12 kg per kilogram of fuel. Upon adding 10% BP, this value decreased to 3.09 kg, further reducing to 3.05 kg with 20% BP. The lowest value was observed with 30% BP, reaching 3.04 kg. Experimental assessments were performed on the Jet Cat P80® micro-turbo-engine, covering aspects such as starting procedures, sudden acceleration, sudden deceleration, and emissions of pollutants (NOx, CO, and SO2) during several engine operational phases. The outcomes reveal that the examined fuel blends exhibited stable engine performance across all tested conditions. This indicates that these blends hold promise as sustainable aviation fuels for micro turbo-engines, presenting benefits in terms of diminished pollution and a more ecologically sound raw material base for fuel production. Full article
(This article belongs to the Special Issue Thermodynamic and Technical Analysis for Sustainability (Volume 3))
Show Figures

Figure 1

Back to TopTop