ijms-logo

Journal Browser

Journal Browser

Nutrients and Active Substances in Natural Products

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: 30 September 2024 | Viewed by 1157

Special Issue Editor


E-Mail Website
Guest Editor
College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
Interests: plant bioactive compounds for human health, especially dietary antioxidants, starch hydrolase inhibitors, proanthocyanidins, natural products with anti-aging property, functional food for controlling postprandial hyperglycemia; high throughput screening methodology development
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

A natural product is a natural compound or substance that is produced by a living organism. These are specialized small molecules, produced in nature, that play key roles in many cellular processes, such as cytotoxicity, cell–cell interactions, intracellular activity, and cell–environment interactions. Therefore, natural sources assist basic research regarding the use of potential active substances for commercial development as lead compounds in drug discovery. Moreover, nutrients in dietary natural products, such as n-3 PUFA, lycopene, and dietary fiber, could play a vital role in the prevention and management of diseases, including antioxidant, anti-cancer, anti-diabetic, and anti-inflammatory properties.

This Special Issue aims to provide a platform for molecular mechanistic research focusing on nutrients and active substances in natural products. We warmly welcome your original papers and reviews based on results from molecular viewpoints.

This Special Issue is supervised by Dr. Yan Zhang and assisted by our Topical Advisory Panel Member Dr. Xingguo Li (College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China).

Dr. Yan Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nutrients
  • active substances
  • natural products
  • bioactive compounds
  • functional food development

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 4510 KiB  
Article
Preparation of Esterified Starches with Different Amylose Content and Their Blending with Polybutylene Succinate
by Shuning Liu, Shi Tang, Yuanhao Lu, Tingting Su and Zhanyong Wang
Int. J. Mol. Sci. 2024, 25(12), 6301; https://doi.org/10.3390/ijms25126301 - 7 Jun 2024
Viewed by 193
Abstract
Three types of starch with different amylose content were esterified and blended with polybutylene succinate (PBS) to obtain esterified manioc starch/PBS (EMS/PBS), esterified corn starch/PBS (ECS/PBS), and esterified waxy corn starch/PBS (EWS/PBS) composites. The EMS/PBS and ECS/PBS composites with high amylose content displayed [...] Read more.
Three types of starch with different amylose content were esterified and blended with polybutylene succinate (PBS) to obtain esterified manioc starch/PBS (EMS/PBS), esterified corn starch/PBS (ECS/PBS), and esterified waxy corn starch/PBS (EWS/PBS) composites. The EMS/PBS and ECS/PBS composites with high amylose content displayed typical V-type crystal structures. The original crystals of EWS, which had low amylose content, were disrupted during the esterification process. EWS exhibited the strongest interaction with PBS and the most favorable interface compatibility. The pyrolysis temperature was in order of EMS/PBS < ECS/PBS < EWS/PBS. The elongation at break of the three blends was higher than that of pure PBS. The esterification and plasticization of the EWS/PBS composite were the most comprehensive. The EWS/PBS composite showed the lowest storage modulus (G’) and complex viscosity (η*). The interfacial bonding force of the composite materials increased with more amylopectin, decreasing intermolecular forces and destroying crystal structures, which decreased G’ and η* and increased toughness. The EWS/PBS composite, with the least amylose content, had the best hydrophobicity and degradation performance. Full article
(This article belongs to the Special Issue Nutrients and Active Substances in Natural Products)
Show Figures

Figure 1

18 pages, 4414 KiB  
Article
Safflower CtFLS1-Induced Drought Tolerance by Stimulating the Accumulation of Flavonols and Anthocyanins in Arabidopsis thaliana
by Xintong Ma, Yuying Hou, Abdul Wakeel Umar, Yuhan Wang, Lili Yu, Naveed Ahmad, Na Yao, Min Zhang and Xiuming Liu
Int. J. Mol. Sci. 2024, 25(10), 5546; https://doi.org/10.3390/ijms25105546 - 19 May 2024
Viewed by 432
Abstract
Flavonol synthase gene (FLS) is a member of the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily and plays an important role in plant flavonoids biosynthetic pathways. Safflower (Carthamus tinctorius L.), a key source of traditional Chinese medicine, is widely cultivated in [...] Read more.
Flavonol synthase gene (FLS) is a member of the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily and plays an important role in plant flavonoids biosynthetic pathways. Safflower (Carthamus tinctorius L.), a key source of traditional Chinese medicine, is widely cultivated in China. Although the flavonoid biosynthetic pathway has been studied in several model species, it still remains to be explored in safflower. In this study, we aimed to elucidate the role of CtFLS1 gene in flavonoid biosynthesis and drought stress responses. The bioinformatics analysis on the CtFLS1 gene showed that it contains two FLS-specific motifs (PxxxIRxxxEQP and SxxTxLVP), suggesting its independent evolution. Further, the expression level of CtFLS1 in safflower showed a positive correlation with the accumulation level of total flavonoid content in four different flowering stages. In addition, CtFLS1-overexpression (OE) Arabidopsis plants significantly induced the expression levels of key genes involved in flavonol pathway. On the contrary, the expression of anthocyanin pathway-related genes and MYB transcription factors showed down-regulation. Furthermore, CtFLS1-OE plants promoted seed germination, as well as resistance to osmotic pressure and drought, and reduced sensitivity to ABA compared to mutant and wild-type plants. Moreover, CtFLS1 and CtANS1 were both subcellularly located at the cell membrane and nucleus; the yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assay showed that they interacted with each other at the cell membrane. Altogether, these findings suggest the positive role of CtFLS1 in alleviating drought stress by stimulating flavonols and anthocyanin accumulation in safflower. Full article
(This article belongs to the Special Issue Nutrients and Active Substances in Natural Products)
Show Figures

Figure 1

Back to TopTop