Bioinformatics of Human Diseases

A special issue of Genes (ISSN 2073-4425). This special issue belongs to the section "Bioinformatics".

Deadline for manuscript submissions: 10 September 2024 | Viewed by 951

Special Issue Editor

Department of Population Health Sciences, Augusta University, Augusta, GA 30912-4900, USA
Interests: statistical genetics; genomics; bioinformatics; population genetics; data science
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Bioinformatics is the scientific discipline that involves the use of computers to collect, store and analyze information about biological data, including DNA and amino acid sequences or annotations about sequences. Bioinformatics is an important discipline for life science research today. The goal of this research branch is to reveal the complexity of genome information structure and the fundamental laws of genetic language, and to clarify the structure, function, interaction and relationship between human proteins and various human diseases, seeking for a variety of therapeutic and preventive measures.

Given the significant potential of bioinformatics to understand human disease, this Special Issue invites researchers to publish their work on bioinformatics analysis methods for disease identification, classification, diagnosis and prognosis that address the current advances in bioinformatics relating human diseases. If you would like more information about the Special Issue, please feel free to contact us.

Dr. Hongyan Xu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Genes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioinformatics
  • human disease
  • sequencing
  • gene expression analysis
  • analysis methods
  • proteomics analysis
  • metabolomics analysis
  • microbiome analysis

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 451 KiB  
Article
Investigating the Influence of ANTXR2 Gene Mutations on Protective Antigen Binding for Heightened Anthrax Resistance
by Chamalapura Ashwathama Archana, Yamini Sri Sekar, Kuralayanapalya Puttahonnappa Suresh, Saravanan Subramaniam, Ningegowda Sagar, Swati Rani, Jayashree Anandakumar, Rajan Kumar Pandey, Nagendra Nath Barman and Sharanagouda S. Patil
Genes 2024, 15(4), 426; https://doi.org/10.3390/genes15040426 - 28 Mar 2024
Viewed by 637
Abstract
Bacillus anthracis is the bacterium responsible for causing the zoonotic disease called anthrax. The disease presents itself in different forms like gastrointestinal, inhalation, and cutaneous. Bacterial spores are tremendously adaptable, can persist for extended periods and occasionally endanger human health. The Anthrax Toxin [...] Read more.
Bacillus anthracis is the bacterium responsible for causing the zoonotic disease called anthrax. The disease presents itself in different forms like gastrointestinal, inhalation, and cutaneous. Bacterial spores are tremendously adaptable, can persist for extended periods and occasionally endanger human health. The Anthrax Toxin Receptor-2 (ANTXR2) gene acts as membrane receptor and facilitates the entry of the anthrax toxin into host cells. Additionally, mutations in the ANTXR2 gene have been linked to various autoimmune diseases, including Hyaline Fibromatosis Syndrome (HFS), Ankylosing Spondylitis (AS), Juvenile Hyaline Fibromatosis (JHF), and Infantile Systemic Hyalinosis (ISH). This study delves into the genetic landscape of ANTXR2, aiming to comprehend its associations with diverse disorders, elucidate the impacts of its mutations, and pinpoint minimal non-pathogenic mutations capable of reducing the binding affinity of the ANTXR2 gene with the protective antigen. Recognizing the pivotal role of single-nucleotide polymorphisms (SNPs) in shaping genetic diversity, we conducted computational analyses to discern highly deleterious and tolerated non-synonymous SNPs (nsSNPs) in the ANTXR2 gene. The Mutpred2 server determined that the Arg465Trp alteration in the ANTXR2 gene leads to altered DNA binding (p = 0.22) with a probability of a deleterious mutation of 0.808; notably, among the identified deleterious SNPs, rs368288611 (Arg465Trp) stands out due to its significant impact on altering the DNA-binding ability of ANTXR2. We propose these SNPs as potential candidates for hypertension linked to the ANTXR2 gene, which is implicated in blood pressure regulation. Noteworthy among the tolerated substitutions is rs200536829 (Ala33Ser), recognized as less pathogenic; this highlights its potential as a valuable biomarker, potentially reducing side effects on the host while also reducing binding with the protective antigen protein. Investigating these SNPs holds the potential to correlate with several autoimmune disorders and mitigate the impact of anthrax disease in humans. Full article
(This article belongs to the Special Issue Bioinformatics of Human Diseases)
Show Figures

Graphical abstract

Back to TopTop