energies-logo

Journal Browser

Journal Browser

Latest Advances In and Prospects of Multiphase Flow and Heat and Mass Transfer

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "J: Thermal Management".

Deadline for manuscript submissions: 24 August 2024 | Viewed by 1727

Special Issue Editor

School of Physics and Astronomy, Sun Yat-sen University, Guangdong 510000, China
Interests: boiling heat transfer; multiphase flow; solar energy utilization; battery thermal management; cooling devices; heat pipe
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We cordially invite you to contribute to this Special Issue of Energies entitled “Latest Advances In and Prospects of Multiphase Flow and Heat and Mass Transfer”.

Transfer phenomena can be found in various fields of science and engineering, including heat and mass transfer and multiphase fluid flow. It addresses applications from the nanoscale to macroscale, from single-phase to multiphase, from non-reactive to reactive flows, and from ground to space. With worsening energy consumption and environmental pollution, high demands are being placed on the further improvement of traditional technologies or the development of novel breakthrough technologies.

In order to achieve the efficient utilization of phase-change and transfer technology, heat and mass transfer mechanisms and multiphase flow at different scales are important factors to consider.

This Special Issue will address the latest research and application trends and fundamentals of energy utilization, including materials, devices and systems. In particular, this Special Issue will address heat and mass transfer and multiphase flow in various devices and systems. The preparation, characterization and heat transfer properties of different functional structures are of interest. We welcome both experimental and computational studies, such as those focusing on molecular dynamics, dissipative particle dynamics and the lattice Boltzmann method, among others.

Topics of interest for this Special Issue include, but are not limited to, the following:

  • The mixing and separation of two-phase flow.
  • The measurement of multiphase flow, including flow patterns, liquid film thickness, void fraction.
  • Advanced microchannel heat sinks, heat pipes, and vapor chambers.
  • Boiling and condensation on functional surfaces and micro/nano-structures.
  • Cooling electronic devices and thermal management systems of electrical vehicles, including air cooling, liquid cooling, and phase-change material cooling or heating.
  • The latent heat function of nanofluids and nanocapsules.
  • Micro/nano heat transfer and multiphase flow of thermal energy storage and thermal management systems, including both experimental and computational studies.
  • Advanced energy storage management systems.
  • Advanced solar receivers and power cycles.
  • Oval phase-change materials for thermal storage and management, including organic, inorganic, and eutectic or micro/nano-encapsulated phase-change materials.

Dr. Sihui Hong
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • multiphase flow
  • flow boiling
  • flow condensation
  • porous media
  • liquid film evaporation

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 5335 KiB  
Article
A Study of the Influence of Fin Parameters on Porous-Medium Approximation
by Junjie Tong, Shuming Li, Tingyu Wang, Shuxiang Wang, Hu Xu and Shuiyu Yan
Energies 2024, 17(5), 1133; https://doi.org/10.3390/en17051133 - 27 Feb 2024
Viewed by 439
Abstract
The porous-medium approximation (PM) approach is extensively employed in large-quantity grid simulations of heat exchangers, providing a time-saving approach in engineering applications. To further investigate the influence of different geometries on the implementation of the PM approach, we reviewed existing experimental conditions and [...] Read more.
The porous-medium approximation (PM) approach is extensively employed in large-quantity grid simulations of heat exchangers, providing a time-saving approach in engineering applications. To further investigate the influence of different geometries on the implementation of the PM approach, we reviewed existing experimental conditions and performed numerical simulations on both straight fins and serrated fins. Equivalent flow and heat-transfer factors were obtained from the actual model, and computational errors in flow and heat transfer were compared between the actual model and its PM model counterpart. This exploration involved parameters such as aspect ratio (a*), specific surface area (Asf), and porosity (γ) to evaluate the influence of various geometric structures on the PM approach. Whether in laminar or turbulent-flow regimes, when the aspect ratio a* of straight fins is 0.98, the flow error (δf) utilizing the PM approach exceeds 45%, while the error remains within 5% when a* is 0.05. Similarly, for serrated fins, the flow error peaks (δf  > 25%) at higher aspect ratios (a* = 0.61) with the PM method and reaches a minimum (δf  < 5%) at lower aspect ratios (a* = 0.19). Under the same Reynolds numbers (Re), employing the PM approach results in an increased heat-transfer error (δh)with rising porosity (γ) and decreasing specific surface area (Asf), both of which remained under 10% within the range of this study. At lower aspect ratios (a*), the fin structure becomes more compact, resulting in a larger specific surface area (Asf) and smaller porosity ). This promotes more uniform flow and heat transfer within the model, which is closer to the characteristics of PM. In summary, for straight fins at 0 < a* < 0.17 in the laminar regime (200 < Re < 1000) and in the turbulent regime (1200 < Re < 5000) and for serrated fins at 0 < a* < 0.28 in the laminar regime (400 < Re < 1000) or 0 < a* < 0.32, in the turbulent regime (2000 < Re < 5000), the flow and heat-transfer errors are less than 15%. Full article
Show Figures

Figure 1

18 pages, 4395 KiB  
Article
An Experimental Investigation on the Heat Transfer Characteristics of Pulsating Heat Pipe with Adaptive Structured Channels
by Jiangchuan Yu, Sihui Hong, Sasaki Koudai, Chaobin Dang and Shuangfeng Wang
Energies 2023, 16(19), 6988; https://doi.org/10.3390/en16196988 - 7 Oct 2023
Cited by 1 | Viewed by 981
Abstract
In recent years, the development of electronic chips has focused on achieving high integration and lightweight designs. As a result, pulsating heat pipes (PHPs) have gained widespread use as passive cooling devices due to their exceptional heat transfer capacity. Nevertheless, the erratic pulsations [...] Read more.
In recent years, the development of electronic chips has focused on achieving high integration and lightweight designs. As a result, pulsating heat pipes (PHPs) have gained widespread use as passive cooling devices due to their exceptional heat transfer capacity. Nevertheless, the erratic pulsations observed in slug flow across multiple channels constitute a significant challenge, hindering the advancement of start-up and heat dissipation capabilities in traditional PHP systems. In this paper, we introduce a flat plate pulsating heat pipe (PHP) featuring adaptive structured channels, denoted as ASCPHP. The aim is to enhance the thermal performance of PHP systems. These adaptive structured channels are specifically engineered to dynamically accommodate volume changes during phase transitions, resulting in the formation of a predictable and controllable two-phase flow. This innovation is pivotal in achieving a breakthrough in the thermal performance of PHPs. We experimentally verified the heat transfer performance of the ASCPHP across a range of heating loads from 10 to 75 W and various orientations spanning 0 to 90 degrees, while maintaining a constant filling ratio (FR) of 40%. In comparison to traditional PHP systems, the ASCPHP design, as proposed in this study, offers the advantage of achieving a lower evaporation temperature and a more uniform temperature distribution across the PHP surface. The thermal resistances are reduced by a maximum of 37.5% when FR is 40%. The experimental results for start-up characteristics, conducted at a heating power of 70 W, demonstrate that the ASCPHP exhibits the quickest start-up response and the lowest start-up temperature among the tested configurations. Furthermore, thanks to the guiding influence of adaptive structured channels on two-phase flow, liquid replenishment in the ASCPHP exhibits minimal dependence on gravity. This means that the ASCPHP can initiate the start-up process promptly, even when placed horizontally. Full article
Show Figures

Figure 1

Back to TopTop