3D Cell Culture Cancer Models: Development and Applications

A special issue of Cancers (ISSN 2072-6694).

Deadline for manuscript submissions: closed (31 July 2020) | Viewed by 72724

Special Issue Editors


E-Mail Website
Guest Editor
CNR-Institute of Nanotechnology, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
Interests: optical pH and oxygen sensors; 3D in vitro tumor models; tumor microenvironment; cell metabolism; cell–cell interactions; fluorescence live cell imaging; scientific computing and data processing
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
Interests: primary cell lines; conditionally reprogrammed cells; pancreatic cancer; tumor microenviroment; drug resistance; personalized therapy; in-vivo tumor models; in-vitro tumor models

Special Issue Information

Dear Colleagues,

Despite the advances in the treatment, cancer is still in the top 10 causes of death worldwide. Therefore, the need of new patient-derived cancer models to improve personalized therapy is critical. Due to their ability to recapitulate the structural and functional aspect of their matched organs, 3D cell culture cancer models have received huge attention from a variety of specialized fields, including cell biology, molecular biology, chemistry, physics, engineering and nanotechnology This Special Issue aims to bring together scientists and physicians to discuss the state-of- the-art in in vitro cancer modeling. The goal is to highlight those approaches that will drive future research in the study of 3D cell culture cancer models for personalized drug sensitivity testing or to study the tumor cell physiology.

Reviews, articles and protocols that explore advanced materials and methods to generate 3D in vitro tumor models that mimic the native heterogeneity and the three-dimensionality of their in vivo counterparts are welcome.

Dr. Loretta L. del Mercato
Dr. Erika Parasido
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cancers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Cancer modeling
  • Preclinical cancer models
  • Patient-derived 3D cancer models
  • Organoids
  • Spheroids
  • Biomaterials (hydrogels, scaffolds, bioreactors, 3D printing technology, organ-on-chips)
  • Conditionally reprogrammed cells
  • Drug response and resistance
  • Personalized therapy
  • Live-cell analyses of 3D cancer models
  • Gene expression analyses in 3D cancer models
  • Drug discover and toxicity testing in 3D cancer models
  • Challenges of 3D cancer models

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

20 pages, 7292 KiB  
Article
Organotypic Co-Cultures as a Novel 3D Model for Head and Neck Squamous Cell Carcinoma
by Luca Engelmann, Julia Thierauf, Natalia Koerich Laureano, Hans-Juergen Stark, Elena-Sophie Prigge, Dominik Horn, Kolja Freier, Niels Grabe, Chao Rong, Philippe Federspil, Karim Zaoui, Peter K. Plinkert, Nicole Rotter, Magnus von Knebel Doeberitz, Jochen Hess and Annette Affolter
Cancers 2020, 12(8), 2330; https://doi.org/10.3390/cancers12082330 - 18 Aug 2020
Cited by 27 | Viewed by 3690
Abstract
Background: Head and neck squamous cell carcinomas (HNSCC) are phenotypically and molecularly heterogeneous and frequently develop therapy resistance. Reliable patient-derived 3D tumor models are urgently needed to further study the complex pathogenesis of these tumors and to overcome treatment failure. Methods: [...] Read more.
Background: Head and neck squamous cell carcinomas (HNSCC) are phenotypically and molecularly heterogeneous and frequently develop therapy resistance. Reliable patient-derived 3D tumor models are urgently needed to further study the complex pathogenesis of these tumors and to overcome treatment failure. Methods: We developed a three-dimensional organotypic co-culture (3D-OTC) model for HNSCC that maintains the architecture and cell composition of the individual tumor. A dermal equivalent (DE), composed of healthy human-derived fibroblasts and viscose fibers, served as a scaffold for the patient sample. DEs were co-cultivated with 13 vital HNSCC explants (non-human papillomavirus (HPV) driven, n = 7; HPV-driven, n = 6). Fractionated irradiation was applied to 5 samples (non-HPV-driven, n = 2; HPV-driven n = 3). To evaluate expression of ki-67, cleaved caspase-3, pan-cytokeratin, p16INK4a, CD45, ∝smooth muscle actin and vimentin over time, immunohistochemistry and immunofluorescence staining were performed Patient checkup data were collected for up to 32 months after first diagnosis. Results: All non-HPV-driven 3D-OTCs encompassed proliferative cancer cells during cultivation for up to 21 days. Proliferation indices of primaries and 3D-OTCs were comparable and consistent over time. Overall, tumor explants displayed heterogeneous growth patterns (i.e., invasive, expansive, silent). Cancer-associated fibroblasts and leukocytes could be detected for up to 21 days. HPV DNA was detectable in both primary and 3D-OTCs (day 14) of HPV-driven tumors. However, p16INK4a expression levels were varying. Morphological alterations and radioresistant tumor cells were detected in 3D-OTC after fractionated irradiation in HPV-driven and non-driven samples. Conclusions: Our 3D-OTC model for HNSCC supports cancer cell survival and proliferation in their original microenvironment. The model enables investigation of invasive cancer growth and might, in the future, serve as a platform to perform sensitivity testing upon treatment to predict therapy response. Full article
(This article belongs to the Special Issue 3D Cell Culture Cancer Models: Development and Applications)
Show Figures

Figure 1

21 pages, 8899 KiB  
Article
Comparison of Hydrogels for the Development of Well-Defined 3D Cancer Models of Breast Cancer and Melanoma
by Rafael Schmid, Sonja K. Schmidt, Jonas Hazur, Rainer Detsch, Evelyn Maurer, Aldo R. Boccaccini, Julia Hauptstein, Jörg Teßmar, Torsten Blunk, Stefan Schrüfer, Dirk W. Schubert, Raymund E. Horch, Anja K. Bosserhoff, Andreas Arkudas and Annika Kengelbach-Weigand
Cancers 2020, 12(8), 2320; https://doi.org/10.3390/cancers12082320 - 17 Aug 2020
Cited by 23 | Viewed by 5013
Abstract
Bioprinting offers the opportunity to fabricate precise 3D tumor models to study tumor pathophysiology and progression. However, the choice of the bioink used is important. In this study, cell behavior was studied in three mechanically and biologically different hydrogels (alginate, alginate dialdehyde crosslinked [...] Read more.
Bioprinting offers the opportunity to fabricate precise 3D tumor models to study tumor pathophysiology and progression. However, the choice of the bioink used is important. In this study, cell behavior was studied in three mechanically and biologically different hydrogels (alginate, alginate dialdehyde crosslinked with gelatin (ADA–GEL), and thiol-modified hyaluronan (HA-SH crosslinked with PEGDA)) with cells from breast cancer (MDA-MB-231 and MCF-7) and melanoma (Mel Im and MV3), by analyzing survival, growth, and the amount of metabolically active, living cells via WST-8 labeling. Material characteristics were analyzed by dynamic mechanical analysis. Cell lines revealed significantly increased cell numbers in low-percentage alginate and HA-SH from day 1 to 14, while only Mel Im also revealed an increase in ADA–GEL. MCF-7 showed a preference for 1% alginate. Melanoma cells tended to proliferate better in ADA–GEL and HA-SH than mammary carcinoma cells. In 1% alginate, breast cancer cells showed equally good proliferation compared to melanoma cell lines. A smaller area was colonized in high-percentage alginate-based hydrogels. Moreover, 3% alginate was the stiffest material, and 2.5% ADA–GEL was the softest material. The other hydrogels were in the same range in between. Therefore, cellular responses were not only stiffness-dependent. With 1% alginate and HA-SH, we identified matrices that enable proliferation of all tested tumor cell lines while maintaining expected tumor heterogeneity. By adapting hydrogels, differences could be accentuated. This opens up the possibility of understanding and analyzing tumor heterogeneity by biofabrication. Full article
(This article belongs to the Special Issue 3D Cell Culture Cancer Models: Development and Applications)
Show Figures

Graphical abstract

29 pages, 4090 KiB  
Article
Human Plasma-Derived 3D Cultures Model Breast Cancer Treatment Responses and Predict Clinically Effective Drug Treatment Concentrations
by Kristin Calar, Simona Plesselova, Somshuvra Bhattacharya, Megan Jorgensen and Pilar de la Puente
Cancers 2020, 12(7), 1722; https://doi.org/10.3390/cancers12071722 - 29 Jun 2020
Cited by 10 | Viewed by 4218
Abstract
Lack of efficacy and a low overall success rate of phase I-II clinical trials are the most common failures when it comes to advancing cancer treatment. Current drug sensitivity screenings present several challenges including differences in cell growth rates, the inconsistent use of [...] Read more.
Lack of efficacy and a low overall success rate of phase I-II clinical trials are the most common failures when it comes to advancing cancer treatment. Current drug sensitivity screenings present several challenges including differences in cell growth rates, the inconsistent use of drug metrics, and the lack of translatability. Here, we present a patient-derived 3D culture model to overcome these limitations in breast cancer (BCa). The human plasma-derived 3D culture model (HuP3D) utilizes patient plasma as the matrix, where BCa cell lines and primary BCa biopsies were grown and screened for drug treatments. Several drug metrics were evaluated from relative cell count and growth rate curves. Correlations between HuP3D metrics, established preclinical models, and clinical effective concentrations in patients were determined. HuP3D efficiently supported the growth and expansion of BCa cell lines and primary breast cancer tumors as both organoids and single cells. Significant and strong correlations between clinical effective concentrations in patients were found for eight out of ten metrics for HuP3D, while a very poor positive correlation and a moderate correlation was found for 2D models and other 3D models, respectively. HuP3D is a feasible and efficacious platform for supporting the growth and expansion of BCa, allowing high-throughput drug screening and predicting clinically effective therapies better than current preclinical models. Full article
(This article belongs to the Special Issue 3D Cell Culture Cancer Models: Development and Applications)
Show Figures

Graphical abstract

17 pages, 7167 KiB  
Article
Phenotypic Heterogeneity and Plasticity of Cancer Cell Migration in a Pancreatic Tumor Three-Dimensional Culture Model
by Seul-Ki Kim, So Dam Jang, Hyunho Kim, Seok Chung, Jong Kook Park and Hyo-Jeong Kuh
Cancers 2020, 12(5), 1305; https://doi.org/10.3390/cancers12051305 - 21 May 2020
Cited by 22 | Viewed by 6438
Abstract
Invasive cancer cell migration is a key feature of metastatic human pancreatic ductal adenocarcinoma (PDAC), yet the underlying mechanisms remain poorly understood. Here, we investigated modes of cancer cell invasion using two pancreatic cancer cell lines with differential epithelial–mesenchymal status, PANC-1 and BxPC-3, [...] Read more.
Invasive cancer cell migration is a key feature of metastatic human pancreatic ductal adenocarcinoma (PDAC), yet the underlying mechanisms remain poorly understood. Here, we investigated modes of cancer cell invasion using two pancreatic cancer cell lines with differential epithelial–mesenchymal status, PANC-1 and BxPC-3, under 3D culture conditions. Multicellular tumor spheroids (TSs) were grown in a collagen matrix co-cultured with pancreatic stellate cells (PSCs) using microchannel chips. PANC-1 cells showed individual migration from TSs via invadopodium formation. BxPC-3 cells showed plasticity between collective and individual migration in either mesenchymal mode, with filopodium-like protrusions, or blebby amoeboid mode. These two cell lines showed significantly different patterns of extracellular matrix (ECM) remodeling, with MMP-dependent degradation in a limited area of ECM around invadopodia for PANC-1 cells, or MMP-independent extensive deformation of ECM for BxPC-3 cells. Cancer cell migration out of the collagen channel significantly increased by PSCs and directional cancer cell migration was mediated by fibronectin deposited by PSCs. Our results highlight the phenotypic heterogeneity and plasticity of PDAC cell migration and ECM remodeling under 3D culture conditions. This 3D co-culture model of pancreatic cancer cells and PSCs offers a useful tool for studying cancer cell migration and ECM remodeling to identify and develop potential molecular targets and anti-cancer agents against human PDAC. Full article
(This article belongs to the Special Issue 3D Cell Culture Cancer Models: Development and Applications)
Show Figures

Graphical abstract

29 pages, 8442 KiB  
Article
Knockout of MMP3 Weakens Solid Tumor Organoids and Cancer Extracellular Vesicles
by Eman A. Taha, Chiharu Sogawa, Yuka Okusha, Hotaka Kawai, May Wathone Oo, Abdellatif Elseoudi, Yanyin Lu, Hitoshi Nagatsuka, Satoshi Kubota, Ayano Satoh, Kuniaki Okamoto and Takanori Eguchi
Cancers 2020, 12(5), 1260; https://doi.org/10.3390/cancers12051260 - 16 May 2020
Cited by 39 | Viewed by 5432
Abstract
The tumor organoid (tumoroid) model in three-dimensional (3D) culture systems has been developed to reflect more closely the in vivo tumors than 2D-cultured tumor cells. Notably, extracellular vesicles (EVs) are efficiently collectible from the culture supernatant of gel-free tumoroids. Matrix metalloproteinase (MMP) 3 [...] Read more.
The tumor organoid (tumoroid) model in three-dimensional (3D) culture systems has been developed to reflect more closely the in vivo tumors than 2D-cultured tumor cells. Notably, extracellular vesicles (EVs) are efficiently collectible from the culture supernatant of gel-free tumoroids. Matrix metalloproteinase (MMP) 3 is a multi-functional factor playing crucial roles in tumor progression. However, roles of MMP3 within tumor growth and EVs have not unveiled. Here, we investigated the protumorigenic roles of MMP3 on integrities of tumoroids and EVs. We generated MMP3-knockout (KO) cells using the CRISPR/Cas9 system from rapidly metastatic LuM1 tumor cells. Moreover, we established fluorescent cell lines with palmitoylation signal-fused fluorescent proteins (tdTomato and enhanced GFP). Then we confirmed the exchange of EVs between cellular populations and tumoroids. LuM1-tumoroids released large EVs (200–1000 nm) and small EVs (50–200 nm) while the knockout of MMP3 resulted in the additional release of broken EVs from tumoroids. The loss of MMP3 led to a significant reduction in tumoroid size and the development of the necrotic area within tumoroids. MMP3 and CD9 (a category-1 EV marker tetraspanin protein) were significantly down-regulated in MMP3-KO cells and their EV fraction. Moreover, CD63, another member of the tetraspanin family, was significantly reduced only in the EVs fractions of the MMP3-KO cells compared to their counterpart. These weakened phenotypes of MMP3-KO were markedly rescued by the addition of MMP3-rich EVs or conditioned medium (CM) collected from LuM1-tumoroids, which caused a dramatic rise in the expression of MMP3, CD9, and Ki-67 (a marker of proliferating cells) in the MMP3-null/CD9-low tumoroids. Notably, MMP3 enriched in tumoroids-derived EVs and CM deeply penetrated recipient MMP3-KO tumoroids, resulting in a remarkable enlargement of solid tumoroids, while MMP3-null EVs did not. These data demonstrate that EVs can mediate molecular transfer of MMP3, resulting in increasing the proliferation and tumorigenesis, indicating crucial roles of MMP3 in tumor progression. Full article
(This article belongs to the Special Issue 3D Cell Culture Cancer Models: Development and Applications)
Show Figures

Graphical abstract

22 pages, 4862 KiB  
Article
Antiparkinson Drug Benztropine Suppresses Tumor Growth, Circulating Tumor Cells, and Metastasis by Acting on SLC6A3/DAT and Reducing STAT3
by Chiharu Sogawa, Takanori Eguchi, Manh Tien Tran, Masayuki Ishige, Kilian Trin, Yuka Okusha, Eman Ahmed Taha, Yanyin Lu, Hotaka Kawai, Norio Sogawa, Masaharu Takigawa, Stuart K. Calderwood, Kuniaki Okamoto and Ken-ichi Kozaki
Cancers 2020, 12(2), 523; https://doi.org/10.3390/cancers12020523 - 24 Feb 2020
Cited by 31 | Viewed by 8508
Abstract
Tumor growth, progression, and therapy resistance are crucial factors in the prognosis of cancer. The properties of three-dimensional (3D) tumor-like organoids (tumoroids) more closely resemble in vivo tumors compared to two-dimensionally cultured cells and are therefore effectively used for assays and drug screening. [...] Read more.
Tumor growth, progression, and therapy resistance are crucial factors in the prognosis of cancer. The properties of three-dimensional (3D) tumor-like organoids (tumoroids) more closely resemble in vivo tumors compared to two-dimensionally cultured cells and are therefore effectively used for assays and drug screening. We here established a repurposed drug for novel anticancer research and therapeutics using a 3D tumoroid-based screening system. We screened six pharmacologically active compounds by using an original tumoroid-based multiplex phenotypic screening system with a matrix metalloproteinase 9 (MMP9) promoter-driven fluorescence reporter for the evaluation of both tumoroid formation and progression. The antiparkinson drug benztropine was the most effective compound uncovered by the screen. Benztropine significantly inhibited in vitro tumoroid formation, cancer cell survival, and MMP9 promoter activity. Benztropine also reduced the activity of oncogenic signaling transducers and trans-activators for MMP9, including STAT3, NF-κB, and β-catenin, and the properties of cancer stem cells/cancer-initiating cells. Benztropine and GBR-12935 directly targeted the dopamine transporter DAT/SLC6A3, whose genetic alterations such as amplification were correlated with poor prognosis for cancer patients. Benztropine also inhibited the tumor growth, circulating tumor cell (CTC) number, and rate of metastasis in a tumor allograft model in mice. In conclusion, we propose the repurposing of benztropine for anticancer research and therapeutics that can suppress tumor progression, CTC, and metastasis of aggressive cancers by reducing key pro-tumorigenic factors. Full article
(This article belongs to the Special Issue 3D Cell Culture Cancer Models: Development and Applications)
Show Figures

Graphical abstract

Review

Jump to: Research, Other

19 pages, 3860 KiB  
Review
The Revolutionary Roads to Study Cell–Cell Interactions in 3D In Vitro Pancreatic Cancer Models
by Donatella Delle Cave, Riccardo Rizzo, Bruno Sainz, Jr., Giuseppe Gigli, Loretta L. del Mercato and Enza Lonardo
Cancers 2021, 13(4), 930; https://doi.org/10.3390/cancers13040930 - 23 Feb 2021
Cited by 19 | Viewed by 3949
Abstract
Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and [...] Read more.
Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones. Full article
(This article belongs to the Special Issue 3D Cell Culture Cancer Models: Development and Applications)
Show Figures

Figure 1

19 pages, 2815 KiB  
Review
3D Culture Systems for Exploring Cancer Immunology
by Allison A. Fitzgerald, Eric Li and Louis M. Weiner
Cancers 2021, 13(1), 56; https://doi.org/10.3390/cancers13010056 - 28 Dec 2020
Cited by 40 | Viewed by 8170
Abstract
Cancer immunotherapy has revolutionized cancer treatment, spurring extensive investigation into cancer immunology and how to exploit this biology for therapeutic benefit. Current methods to investigate cancer-immune cell interactions and develop novel drug therapies rely on either two-dimensional (2D) culture systems or murine models. [...] Read more.
Cancer immunotherapy has revolutionized cancer treatment, spurring extensive investigation into cancer immunology and how to exploit this biology for therapeutic benefit. Current methods to investigate cancer-immune cell interactions and develop novel drug therapies rely on either two-dimensional (2D) culture systems or murine models. However, three-dimensional (3D) culture systems provide a potentially superior alternative model to both 2D and murine approaches. As opposed to 2D models, 3D models are more physiologically relevant and better replicate tumor complexities. Compared to murine models, 3D models are cheaper, faster, and can study the human immune system. In this review, we discuss the most common 3D culture systems—spheroids, organoids, and microfluidic chips—and detail how these systems have advanced our understanding of cancer immunology. Full article
(This article belongs to the Special Issue 3D Cell Culture Cancer Models: Development and Applications)
Show Figures

Figure 1

22 pages, 1697 KiB  
Review
Organotypic Culture of Acinar Cells for the Study of Pancreatic Cancer Initiation
by Carlotta Paoli and Alessandro Carrer
Cancers 2020, 12(9), 2606; https://doi.org/10.3390/cancers12092606 - 12 Sep 2020
Cited by 12 | Viewed by 7168
Abstract
The carcinogenesis of pancreatic ductal adenocarcinoma (PDA) progresses according to multi-step evolution, whereby the disease acquires increasingly aggressive pathological features. On the other hand, disease inception is poorly investigated. Decoding the cascade of events that leads to oncogenic transformation is crucial to design [...] Read more.
The carcinogenesis of pancreatic ductal adenocarcinoma (PDA) progresses according to multi-step evolution, whereby the disease acquires increasingly aggressive pathological features. On the other hand, disease inception is poorly investigated. Decoding the cascade of events that leads to oncogenic transformation is crucial to design strategies for early diagnosis as well as to tackle tumor onset. Lineage-tracing experiments demonstrated that pancreatic cancerous lesions originate from acinar cells, a highly specialized cell type in the pancreatic epithelium. Primary acinar cells can survive in vitro as organoid-like 3D spheroids, which can transdifferentiate into cells with a clear ductal morphology in response to different cell- and non-cell-autonomous stimuli. This event, termed acinar-to-ductal metaplasia, recapitulates the histological and molecular features of disease initiation. Here, we will discuss the isolation and culture of primary pancreatic acinar cells, providing a historical and technical perspective. The impact of pancreatic cancer research will also be debated. In particular, we will dissect the roles of transcriptional, epigenetic, and metabolic reprogramming for tumor initiation and we will show how that can be modeled using ex vivo acinar cell cultures. Finally, mechanisms of PDA initiation described using organotypical cultures will be reviewed. Full article
(This article belongs to the Special Issue 3D Cell Culture Cancer Models: Development and Applications)
Show Figures

Graphical abstract

21 pages, 2553 KiB  
Review
Practical Review on Preclinical Human 3D Glioblastoma Models: Advances and Challenges for Clinical Translation
by Aurélie Soubéran and Aurélie Tchoghandjian
Cancers 2020, 12(9), 2347; https://doi.org/10.3390/cancers12092347 - 19 Aug 2020
Cited by 23 | Viewed by 6881
Abstract
Fifteen years after the establishment of the Stupp protocol as the standard of care to treat glioblastomas, no major clinical advances have been achieved and increasing patient’s overall survival remains a challenge. Nevertheless, crucial molecular and cellular findings revealed the intra-tumoral and inter-tumoral [...] Read more.
Fifteen years after the establishment of the Stupp protocol as the standard of care to treat glioblastomas, no major clinical advances have been achieved and increasing patient’s overall survival remains a challenge. Nevertheless, crucial molecular and cellular findings revealed the intra-tumoral and inter-tumoral complexities of these incurable brain tumors, and the essential role played by cells of the microenvironment in the lack of treatment efficacy. Taking this knowledge into account, fulfilling gaps between preclinical models and clinical samples is necessary to improve the successful rate of clinical trials. Since the beginning of the characterization of brain tumors initiated by Bailey and Cushing in the 1920s, several glioblastoma models have been developed and improved. In this review, we focused on the most widely used 3D human glioblastoma models, including spheroids, tumorospheres, organotypic slices, explants, tumoroids and glioblastoma-derived from cerebral organoids. We discuss their history, development and especially their usefulness. Full article
(This article belongs to the Special Issue 3D Cell Culture Cancer Models: Development and Applications)
Show Figures

Graphical abstract

26 pages, 2778 KiB  
Review
Trends in Bone Metastasis Modeling
by Roberta Laranga, Serena Duchi, Toni Ibrahim, Ania Naila Guerrieri, Davide Maria Donati and Enrico Lucarelli
Cancers 2020, 12(8), 2315; https://doi.org/10.3390/cancers12082315 - 17 Aug 2020
Cited by 8 | Viewed by 7455
Abstract
Bone is one of the most common sites for cancer metastasis. Bone tissue is composed by different kinds of cells that coexist in a coordinated balance. Due to the complexity of bone, it is impossible to capture the intricate interactions between cells under [...] Read more.
Bone is one of the most common sites for cancer metastasis. Bone tissue is composed by different kinds of cells that coexist in a coordinated balance. Due to the complexity of bone, it is impossible to capture the intricate interactions between cells under either physiological or pathological conditions. Hence, a variety of in vivo and in vitro approaches have been developed. Various models of tumor–bone diseases are routinely used to provide valuable information on the relationship between metastatic cancer cells and the bone tissue. Ideally, when modeling the metastasis of human cancers to bone, models would replicate the intra-tumor heterogeneity, as well as the genetic and phenotypic changes that occur with human cancers; such models would be scalable and reproducible to allow high-throughput investigation. Despite the continuous progress, there is still a lack of solid, amenable, and affordable models that are able to fully recapitulate the biological processes happening in vivo, permitting a correct interpretation of results. In the last decades, researchers have demonstrated that three-dimensional (3D) methods could be an innovative approach that lies between bi-dimensional (2D) models and animal models. Scientific evidence supports that the tumor microenvironment can be better reproduced in a 3D system than a 2D cell culture, and the 3D systems can be scaled up for drug screening in the same way as the 2D systems thanks to the current technologies developed. However, 3D models cannot completely recapitulate the inter- and intra-tumor heterogeneity found in patients. In contrast, ex vivo cultures of fragments of bone preserve key cell–cell and cell–matrix interactions and allow the study of bone cells in their natural 3D environment. Moreover, ex vivo bone organ cultures could be a better model to resemble the human pathogenic metastasis condition and useful tools to predict in vivo response to therapies. The aim of our review is to provide an overview of the current trends in bone metastasis modeling. By showing the existing in vitro and ex vivo systems, we aspire to contribute to broaden the knowledge on bone metastasis models and make these tools more appealing for further translational studies. Full article
(This article belongs to the Special Issue 3D Cell Culture Cancer Models: Development and Applications)
Show Figures

Figure 1

Other

Jump to: Research, Review

13 pages, 3575 KiB  
Brief Report
A Simple Three-Dimensional In Vitro Culture Mimicking the In Vivo-Like Cell Behavior of Bladder Patient-Derived Xenograft Models
by Robson Amaral, Maike Zimmermann, Ai-Hong Ma, Hongyong Zhang, Kamilla Swiech and Chong-Xian Pan
Cancers 2020, 12(5), 1304; https://doi.org/10.3390/cancers12051304 - 21 May 2020
Cited by 17 | Viewed by 3094
Abstract
Patient-derived xenograft (PDX) models allow for personalized drug selection and the identification of drug resistance mechanisms in cancer cells. However, PDX models present technical disadvantages, such as long engraftment time, low success rate, and high maintenance cost. On the other hand, tumor spheroids [...] Read more.
Patient-derived xenograft (PDX) models allow for personalized drug selection and the identification of drug resistance mechanisms in cancer cells. However, PDX models present technical disadvantages, such as long engraftment time, low success rate, and high maintenance cost. On the other hand, tumor spheroids are emerging as an in vitro alternative model that can maintain the phenotype of cancer cells long enough to perform all assays and predict a patient’s outcome. The present work aimed to describe a simple, reproducible, and low-cost 3D in vitro culture method to generate bladder tumor spheroids using human cells from PDX mice. Cancer cells from PDX BL0293 and BL0808 models, previously established from advanced bladder cancer, were cultured in 96-well round-bottom ultra-low attachment (ULA) plates with 5% Matrigel and generated regular and round-shaped spheroids (roundness > 0.8) with a diameter larger than 400 μm and a hypoxic core (a feature related to drug resistance in solid tumors). The responses of the tumor spheroids to the antineoplastic drugs cisplatin, gemcitabine, and their combination were similar to tumor responses in in vivo studies with PDX BL0293 and BL0808 mice. Therefore, the in vitro 3D model using PDX tumor spheroids appears as a valuable tool that may predict the outcome of in vivo drug-screening assays and represents a low-cost strategy for such purpose. Full article
(This article belongs to the Special Issue 3D Cell Culture Cancer Models: Development and Applications)
Show Figures

Graphical abstract

Back to TopTop