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Abstract: Lack of efficacy and a low overall success rate of phase I-II clinical trials are the most
common failures when it comes to advancing cancer treatment. Current drug sensitivity screenings
present several challenges including differences in cell growth rates, the inconsistent use of drug
metrics, and the lack of translatability. Here, we present a patient-derived 3D culture model to
overcome these limitations in breast cancer (BCa). The human plasma-derived 3D culture model
(HuP3D) utilizes patient plasma as the matrix, where BCa cell lines and primary BCa biopsies were
grown and screened for drug treatments. Several drug metrics were evaluated from relative cell
count and growth rate curves. Correlations between HuP3D metrics, established preclinical models,
and clinical effective concentrations in patients were determined. HuP3D efficiently supported the
growth and expansion of BCa cell lines and primary breast cancer tumors as both organoids and
single cells. Significant and strong correlations between clinical effective concentrations in patients
were found for eight out of ten metrics for HuP3D, while a very poor positive correlation and a
moderate correlation was found for 2D models and other 3D models, respectively. HuP3D is a feasible
and efficacious platform for supporting the growth and expansion of BCa, allowing high-throughput
drug screening and predicting clinically effective therapies better than current preclinical models.

Keywords: 3D culture; breast cancer; treatment response; precision medicine; drug metrics

1. Introduction

Breast cancer (BCa) is a heterogeneous disease, which includes different biological entities
characterized by distinct clinical behaviors and responses to treatment [1–3]. Most BCa deaths,
around 90%, can be contributed to recurrence or the spread of the disease [4,5]. Nonetheless, the fact
that the BCa population is highly heterogeneous is generally overlooked and most BCa patients still
receive the same treatment [6–8]. Despite significant improvements in research and development
in the cancer field, about 80% of oncology drugs in clinical trials fail to receive U.S. Food and Drug
Administration (FDA) approval [9–11]. Recent studies have found the overall success rate of phase I-II
clinical trials for cancer treatment to be extremely low (3.4%) [11], and the lack of efficacy was found to
be the most common reason for failure (>50%) over other factors such as safety, study design or data
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analysis [12,13]. These studies clearly indicate the need for more suitable preclinical models that would
provide an accurate prediction of clinical efficacy. Unfortunately, the most common preclinical cancer
models do not deliver full fidelity of the heterogeneous BCa tumors in the context of a tumor-like
environment. Animal models, including patient-derived xenografts (PDX), are very useful in the
recreation of this environment, but they are costly, relatively time consuming, and their reproducibility
and translatability to human cancer clinical trials is very low [14,15]. Traditional two-dimensional (2D)
models do not adequately mimic cellular interactions and fail to adequately recapitulate the in vivo-like
architecture, directly influencing diffusion capabilities and drug resistance [16]. Recent studies have
indicated that the recapitulation of the cell-cell interactions, the recreation of the extracellular matrix
(ECM) architecture, the simulation of drug transport and growth factors, and the amenability to
high-content screening are a few well-established advantages of three-dimensional (3D) cell co-culture
models [17,18]. In addition, preclinical models that solely use cancer cells as monocultures frequently
lead to disappointing therapeutic outcomes due to the fact that environment-mediated drug resistance is
a major contributor to lack of therapeutic efficacy [19–25]. All this evidence suggests that 3D cell culture
techniques provide useful advantages for representing in vivo tumor-like environments and modelling
drug sensitivity [26–28]; however, there are still challenges. Some of the current limitations to these 3D
culture models include the incorporation of exogenous ECM materials that might introduce undesired
confounding artifacts to the recreation of tumor behaviors, the establishment of differences in cell
growth rates in the model, and the varying use of drug metrics across different culture techniques [29].
Protein-based hydrogels, such as fibrin hydrogels, have been used in a wide range of applications
including regenerative medicine, drug delivery, and as 3D culture models [30,31]. Fibrin scaffolds
created through the cross-linking of commercial fibrinogen with thrombin have reported success in
cancer growth and drug screening applications in different cancer types, including breast cancer [31,32].
Here, we present a physiological, patient-derived, tumor-like 3D culture method that utilizes patient
plasma (fibrinogen cross-linking to fibrin) as the matrix, referred to as the human plasma-derived 3D
culture model (HuP3D), which supports the efficient growth and expansion of primary breast cancer
tumors, as well as allows for the screening of cancer drug responses in BCa cell lines and primary BCa
tumors through several drug metrics for further prediction of clinical therapeutic efficacy.

2. Results

2.1. Chemical and Physical Characterization of the HuP3D Culture Model

Human plasma-derived 3D culture (HuP3D) models were created by cross-linking fibrinogen,
a blood plasma protein responsible for normal blood clotting when converted into fibrin (Figure 1a) [33],
generating a gelatinous-like scaffold matrix using traditional tissue culture surfaces as the recipient
mold, with media added on top to overcome drying of the matrix (Figure 1b). To optimize conditions
for cell culture, we needed a stable 3D matrix with fast, yet controlled, cross-linking capabilities and
a porous intrinsic structure. For that purpose, three classical cross-linkers were tested to determine
which component would produce optimal cross-linking of the HuP3D. Plasma requires the presence
of a cross-linking agent in order to form a 3D scaffold matrix, otherwise, it remains in a liquid form
with no reportable cross-linking time (represented as not applicable, N/A) when no cross-linking agent
is added. The addition of thrombin allowed the cross-linking time to be reduced with increasing
concentrations to a value of 5 min at 5 mg/mL. Adding CaCl2 generated the fastest cross-linking time
(4 min) at a concentration of 1 mg/mL, and increasing concentrations proved to be less efficacious.
Factor XIII required activation by incorporating calcium, and the fastest cross-linking time for this
component was over 40 min at a concentration of 6 mg/mL (Figure 1c). With this data, CaCl2 at
a 1 mg/mL concentration was determined to be the optimal concentration for cross-linking for the
remainder of the experiments. Another important aspect to consider is that fibrin clots tend to degrade
or lyse overtime [34], so in order to reduce HuP3D degradation, as well as maintain structural integrity
and stability, various antifibrinolytics were tested. HuP3D integrity and stability was measured after
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24 days in culture by comparing the weight of the 3D cultures at day 24 to the weight of the 3D cultures
at day 0. A lack of antifibrinolytics incorporated into the matrix resulted in a weight loss of about
16.98 ± 3.77 mg (representing around 5% to 9% loss of total weight). While epsilon-aminocaproic
acid (EACA) was not able to sustain an integrity benefit at the concentrations tested, the other
three antifibrinolytics resulted in weight gains of at least 5 to 10% of their total weight (Figure 1d).
In particular, trans-4-(aminomethyl)cyclohexanecarboxylic acid (AMCHA) at 5 and 10 mg/mL resulted
in the highest weight gain of about 24 mg (representing around 10% gain of total weight), and this
was defined to be the recommended concentration for all remaining experiments. Working under
the recommended cross-linker and stabilizer concentrations, scanning electron microscopy (SEM)
was used to determine the physical structure of HuP3D cultures. SEM (Figure 1e) images revealed a
porous structure with a network of interconnecting fibers, which will aid in gas diffusion, nutrient
supply, and waste removal through the 3D culture matrix [35,36]. Fibrinogen levels were found to
be non-significantly different between plasma from healthy subjects and BCa patients (Figure 1f).
In addition, plasma from healthy subjects and BCa patients was cross-linked to generate HuP3D
cultures, which were further characterized by the cytokine milieu of the 3D culture matrix. Using a
custom antibody array, we measured proteins (in duplicate) at the baseline, day 0, of acellular HuP3D
cultures in serum free media (Figure 1g). Relative protein expression was compared for healthy subjects
and BCa patients and no significant differences were found, except for a higher expression of CA125,
which is a common blood test marker for BCa detection (Figure 1h). High levels of RANTES, TIMP-1,
and TIMP-2 were present in both groups of plasma, as well as detectable levels of IL-β1, MIP-1a, TNFα,
SDF-1, MMP1, MMP9, INF-γ, IL-2 LIF, EGF, IGF-I, HGF, and PDGF-AB.
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Figure 1. Chemical and physical characterization of the human plasma-derived 3D (HuP3D) culture
model. (a) HuP3D matrices are formed through the cross-linking of fibrinogen, found naturally
in plasma, into fibrin. These matrices can include cells either from cell lines or tissue biopsies.
(b) HuP3D cultures in 96-well plates generate a 3 mm tall gelatinous-like scaffold matrix where
media is added on top to overcome drying. (c) Optimization cross-linking studies. A measurement
of the time (minutes) to achieve matrix cross-linking using three relevant cross-linking agents of
the blood coagulation process including thrombin (0–5 mg/mL), CaCl2 (0–5 mg/mL), and factor
XIII (0–6 mg/mL) (mean ± SD, n = 3). (d) Optimization stabilization studies. Stabilization effect
studies of preventing fibrin degradation and stability improvement in the scaffold were achieved
by testing several chemical antifibrinolytic agents including trans-4-(aminomethyl) cyclohexane
carboxylic acid (AMCHA) (0–10 mg/mL), aprotinin (0–550 mg/mL), epsilon-aminocaproic acid
(EACA) (0–2.5 mg/mL), and 4-(aminomethyl)benzoic acid (PAMBA) (0–2.5 mg/mL) (mean ± SD,
n = 3). Scaffold stability was studied by measuring each scaffold weight at day 0 and at the
conclusion of a three-week time period. ** p < 0.001 compared to lack of stabilizer. (e) Representative
SEM micrograph of an acellular HuP3D scaffold cultured for 4 days. Scale bar: 5 µm. (f) Fibrinogen
levels (mg/dL) present in plasma from healthy subjects (mean ± SD, n = 5) and breast cancer (BCa)
patients (mean ± SD, n = 2) used in the included studies. (g) Example of the custom human cytokine
array. (h) Relative protein expression of HuP3D cultures made of plasma from healthy subjects and
BCa patients (mean ± SD, n = 2). * p < 0.05.
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2.2. HuP3D Culture Supports BCa Proliferation

Human plasma from healthy subjects was used when BCa cell lines were integrated into HuP3D
cultures, merely due to the lack of access to matching plasma from the BCa patients from which
the cell lines were derived and in order to develop a culture technique amenable to utilization by a
wide range of different research laboratories. Five BCa lines (Table 1) were incorporated into HuP3D
cultures where, after initial stabilization of the cells within the matrix for half a day, media was added
on top and refreshed every 2–3 days over the course of the experiment. Proliferation assays were
performed at days 0.5, 3, and 7 (Figure 2a). In particular, BCa cell lines were cultured alone (BCa
only), in combination with a healthy microenvironment (HME) derived from healthy breast tissue,
or in combination with a tumor microenvironment (TME) containing accessory cells derived from BCa
tumor biopsies after sorting out CD44+ BCa cells. The five BCa cell lines alone showed very similar
results in proliferation with an increased proliferation of approximately 1.6-fold and 2-fold compared
to γ0 at day 3 and 7, respectively. While co-culture with a HME did not improve BCa proliferation,
co-culture with a TME at day 7 significantly increased cell proliferation to 3-fold in all the BCa cell
lines tested, reflecting the important role of the TME on tumor proliferation (Figure 2b(i), Figure S1a
and Figure S2). With this data we further corroborated that co-culture with a TME increased the
expression of proteins involved in survival and proliferation (pAKT), while no effect was found in
apoptotic pathways (cleaved caspase 3) at the single cell level focusing on the BCa cell population,
using flow cytometry (Figure 2b(ii)). We further confirmed these results using immunohistochemistry
IHC, which revealed an increased proliferation through pixel count, of an increased Ki67 expression
over time, at day 7, while apoptosis expression, measured by cleaved caspase 3, remained unaltered
(Figure 2b(iii)). Moreover, we evaluated HuP3D cultures using confocal imaging (Figure 2b(iv)).
HuP3D cultures revealed a significant increase in the number of BCa cells (DiO labeled) and increased
clustering capabilities at day 7 compared to day 3 (Figure S1a,b).

Table 1. Characteristics and molecular subtypes of the BCa cell lines used in this article.

Cell Line Doubling Time Origin Pathology Subtype ER PR HER2

MDA-MB-231 38 h Pleural Effusion Adenocarcinoma Triple Negative B − − −

MDA-MB-453 38 h Pleural Effusion Adenocarcinoma HER2 Positive − − +
ZR-75-1 54 h Ascites Invasive Ductal Carcinoma Luminal A + −/+ −

MCF7 48 h Pleural Effusion Invasive Ductal Carcinoma Luminal A + + −

SK-BR-3 30 h Pleural Effusion Adenocarcinoma HER2 Positive − − +

Doubling time designates the time required for the BCa cell line population to double in size in traditional 2D
cultures. Origin and pathology columns show the clinical properties of each of the BCa cell lines and where each of
the cell lines is derived from. Categorization of the BCa cell lines into molecular subtypes such as luminal A, luminal
B, HER2 positive, and triple negative is based on the primary features of each cell line and is represented according
to the positive or negative status of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth
factor receptor 2 (HER2) characteristics.
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Figure 2. HuP3D cultures allow BCa cell proliferation. (a) HuP3D matrices are created through the
cross-linking of plasma fibrinogen and the matrices can include pre-labeled BCa cells from 5 cell
lines representing different BCa subtypes in culture with numerous variations of microenvironment
components. These matrices were cultured for 0.5, 3, and 7 days followed by enzymatic digestion
and single cell analysis using flow cytometry, immunohistochemistry (IHC), or confocal imaging.
(b) Cell proliferation and apoptosis of the five BCa cell lines either alone, in co-culture with a healthy
microenvironment (HME), or in co-culture with a tumor microenvironment (TME) in the HuP3D matrix
presented as (i) cell fold of γ0 for 3 and 7 days (mean ± SD, n = 4); (ii) representative flow cytometry
histograms of FITC-pAKT and V450-cleaved caspase 3 signals compared to the fluorescence minus one
(FMO) control at day 7 for the MDA-MB-231 BCa cell line (mean ± SD, n = 3); (iii) representative IHC
images of the MDA-MB-231 cell line for Ki67 and caspase 3 staining at days 3 and 7, scale bar = 600 µm;
(iv) representative confocal images on day 3 and day 7 to monitor proliferation of the MDA-MB-231 BCa
cell line grown within the HuP3D (DiO: green). Scale bar = 1000 µm. ** p < 0.001, n.s. not significant.
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2.3. HuP3D Culture Enhances Extracellular Vesicle (EV) Secretion

HuP3D cultures are formed with human plasma, which contains extracellular vesicles (EVs).
We therefore sought to study the amount of EVs incorporated from the plasma itself and the de
novo secretion of EVs by the cells in 2D and HuP3D cultures. Human plasma from each subject
was separated proportionally to incorporate the same amount of plasma into each culture condition.
Conditions include plasma in culture media with no cells, plasma instead of fetal bovine serum
(FBS) in culture media with cells in 2D, and plasma in HuP3D (matrix and culture media) (n = 3).
EVs showed a consistent size of around 150 nm for all three culture conditions (Figure 3a). The number
of particles/mL detected using dynamic light scattering (DLS) revealed a significant 6-fold increase in
EVs in HuP3D cultures compared to 2D cultures in plasma incubated with the same amount of BCa
cells. We also found that the EV particles/mL baseline control of just plasma in media with no cells was
increased by about 2-fold and 10-fold in 2D and HuP3D cultures, respectively, revealing the additional
EV secretion by the BCa cells (Figure 3b). We further confirmed that the exosome protein concentration
was boosted in HuP3D cultures compared to the baseline plasma media and 2D cultures through a BCA
protein assay. While baseline plasma in media and no cells showed 0.14 µg/µL EVs, 2D and HuP3D
cultures showed a significant increase of about 1.3-fold and 1.53-fold, respectively (Figure 3c). Finally,
we confirmed the expression of a common EV marker, CD9, through western immunoblotting to
further validate the presence and enhancement of EVs in HuP3D cultures compared to 2D (Figure 3d).
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Figure 3. Extracellular vesicle production in the HuP3D matrix increases in comparison to 2D cultures
with and without cells from the MDA-MB-231 BCa cell line. (a) Characterization of the extracellular
vesicles was completed using dynamic light scattering (DLS) analysis for size (nm) (mean ± SD, n = 3).
(b) EV particle concentration/mL (mean ± SD, n = 3). (c) Protein concentration (µg/µL) using a BCA
protein assay kit (mean ± SD, n = 4). (d) Western blot analysis on the expression of the EV marker CD9.
* p < 0.05 ** p < 0.001, n.s. not significant.

2.4. HuP3D Cultures Allow High-Throughput Drug Screening of BCa Cell Lines

The five BCa cell lines in HuP3D were screened for seven common BCa chemotherapeutics
(capecitabine (CAP), cyclophosphamide (CYCLO), docetaxel (DTX), epirubicin (EPI), methotrexate
(MTX), paclitaxel (PTX), and carboplatin (CARBO)) at nine increasing drug concentrations
(0.1 nM–300 µM) plus a dimethyl sulfoxide (DMSO) control (γctrl) and analyzed using flow cytometry
at days 0.5 and 7. Data obtained was used to calculate 10 relevant drug metrics based on relative cell
count and growth rate (GR) value curves according to previously described methods, using the online
GR calculator tool developed by Hafner et al. [37–39] (Figure S3b). Briefly, the HuP3D culture drug
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metrics from the relative cell count curve included the half maximum inhibitory concentration (IC50),
maximal measured efficacy (Emax), area under the curve (AUC), half maximal response concentration
(EC50), and the effect of the drug at the infinite concentration (Einf). HuP3D culture drug metrics from
the GR curve included the half maximum growth rate inhibition concentration (GR50), the maximum
effect of the drug at the highest tested concentration (GRmax), area over the curve (GRAOC), the half
maximal growth rate inhibition response concentration (GEC50), and the growth rate inhibition effect
of the drug at the infinite concentration (GRinf). Figure S3b shows the changes in all the metrics when
comparing cytostatic and cytotoxic drugs.

BCa cell lines after treatment were identified as DiD+, with viability confirmed using Sytox green
viability marker, and analyzed using flow cytometry, where the data was normalized against an internal
counting bead control. Relative cell count (Figure 4a) and GR value (Figure 4b) curves for all the
screened conditions revealed heterogeneous therapeutic responses. For example, while docetaxel and
paclitaxel were cytotoxic over four of the BCa cell lines in the relative cell count curve, a milder cytostatic
effect was found in ZR-75-1. However, in the GR curve for docetaxel and paclitaxel, the cytostatic effect
was exhibited only in the MDA-MB-231 cell line. Epirubicin metrics were consistent in cell count and
GR curves, which exhibited MDA-MB-231 as the most resistant cell line. Capecitabine was revealed as
a cytostatic drug over the concentrations tested, and cyclophosphamide showed ZR-75-1 as resistant at
all doses, even at the higher doses tested. Methotrexate and carboplatin also showed a heterogeneous
response among the BCa cell lines with MDA-MB-231 being the most sensitive to carboplatin and
MCF7 being the most resistant to methotrexate.

Using the GR calculator tool, multiple different drug metrics were calculated (Table S1) and all
drug metrics revealed heterogeneity among the BCa cell lines, drugs, and even between the metrics
themselves. For metrics measuring concentrations (IC50, EC50, GR50, and GEC50), the y-axis scale goes
from 0.1 nM to 300 µM, whereas GRmax and GRinf values lie between 1 and −1 (Figure 5). While IC50,
EC50, and their counterparts GR50 and GEC50 showed that DTX, EPI, MTX, and PTX were very effective
at low doses for the 5 cell lines, all metrics for CYCLO revealed a large variability of therapeutic
response amongst the different cell lines. Emax and Einf showed ZR-75-1 as one of the most resistant
cell lines to all therapies, followed by MCF7. All these results clearly resonate with the necessity of
having multiple drug metrics to predict therapeutic efficacy, and the critical need for personalized
approaches allowing for the prediction of response to therapy in a precision-based manner.
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Figure 4. HuP3D cultures, created with healthy fibrin plasma, allow for high-throughput drug screening
for BCa cell lines. (a) Results showing the effect of increasing concentrations (0.0001, 0.001, 0.01, 0.1, 1,
10, 30, 100, and 300 µM) of capecitabine (CAP), cyclophosphamide monohydrate (CYCLO), docetaxel
(DTX), epirubicin hydrochloride (EPI), methotrexate (MTX), paclitaxel (PTX), and carboplatin (CARBO)
on 5 BCa cell lines when grown in HuP3D cultures on BCa survival (mean, n = 4) and (b) on GR values
(mean, n = 4).
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Figure 5. HuP3D drug metrics reveal heterogeneous responses. Results showing IC50, Emax, AUC,
EC50, Einf, GR50, GRmax, GRAOC, GEC50, and GRinf values in HuP3D cultures for 5 BCa cell lines
(n = 4/cell line) and the mean average for the 5 cell lines for capecitabine (CAP), carboplatin
(CARBO), cyclophosphamide monohydrate (CYCLO), docetaxel (DTX), epirubicin hydrochloride
(EPI), methotrexate (MTX), and paclitaxel (PTX).

2.5. HuP3D Culture Drug Metrics Correlate Better Than Other In Vitro Models with Clinical Data

While establishing drug response metrics in vitro is very useful for the discovery and repurposing
of drugs, the validation of those drug response metrics as predictive tools of clinically effective
treatments in patients would be far superior. In order to assess the predictive value of the drug
response metrics obtained in our previous assays, we compared them with metric data obtained from
relevant literature for 2D models (IC50) and other 3D models (IC50), as well as effective concentrations
in patients from phase I or II studies that examined the pharmacokinetics of the tested chemotherapies
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(steady state concentration, Css) (Figure 6a). A scatterplot correlation graph allowed us to establish
the strength, direction, and form of the relationship between the in vitro models and the Css clinical
data, with Pearson correlation coefficients (r) that were calculated to measure the strength of those
relationships. While a very weak positive correlation (r = 0.11) existed for the comparison of 2D IC50 to
clinical Css values (Figure 6b(i)), moderate (r = 0.42) to strong (r = 0.82) correlations were revealed for
IC50 values of other 3D models (Figure 6b(ii)) and the HuP3D culture model (Figure 6b(iii)) compared
to the clinical Css, respectively. When Pearson correlation coefficients of the 10 HuP3D metrics where
compared to the clinical Css, a significant and strong correlation (higher than 0.5) was found for 8 of
these metrics (Figure 6c). Only the GR50 and Einf of the HuP3D metrics significantly and strongly
correlated with the IC50 of other 2D and 3D models, respectively (Figure 6c). In addition, a violin plot
clearly shows how most of the HuP3D metrics correlated well with clinical Css values (Figure 6d),
from purely a distribution standpoint, revealing the potential of some of the drug metrics for HuP3D
to potentially evaluate clinically effective therapeutic responses relevant to patients. Not surprisingly,
HuP3D metrics correlate moderately with other 3D model metrics and poorly with 2D model metrics
(Figure 6d).

To further assess the inter-correlation among the 10 HuP3D metrics, a correlogram was used to
depict the Pearson correlation coefficients (Figure 6e). IC50 and EC50 showed the strongest positive
correlation among all the compared metrics. Metrics derived from the relative cell count curve (IC50,
Emax, AUC, EC50), except Einf, showed a significant and strong positive correlation between them.
GR50 and GRmax also positively correlated with the metrics derived from the relative cell count curve,
except Einf. On the other hand, GRAOC significantly and strongly negatively correlated with all the
metrics, except Einf and GEC50.

2.6. HuP3D Cultures Support Primary BCa Proliferation and Retrospective Prediction of Therapeutic Efficacy
in BCa Patients

HuP3D primary cultures were developed using tissue biopsies and matching plasma from the
same BCa patient (Figure 7a). Tissue biopsies were processed either into small organoids or as single
cell suspensions. Cell proliferation of BCa cells detected as CD44+/EpCAM+ by both methodologies
for the processing of fresh biopsies was not found to be significantly different with about a 2.5-fold and
3.3-fold growth compared to day 0 at days 3 and 7, respectively (Figure 7b and Figure S2). We further
compared the feasibility of growing the same biopsy directly from fresh tissue or after a freeze/thaw
cycle using the single cell suspension methodology. Cell proliferation of CD44+/EpCAM+ BCa cells
from frozen conditions remained unaltered when compared to the cells from fresh tissue with about a
2.3-fold and 3.7-fold growth compared to day 0 at days 3 and 7, respectively (Figure 7c).

Successful growth of frozen biopsies allowed us to further select three snap frozen biopsies from
the Sanford biobank with a known clinical outcome after treatment with the same chemotherapeutic
regimen. Plasma and biopsies from each of these patients were used in a precision-based approach and
tested with the same chemotherapeutic regimen (Arimidex) as was utilized in the clinic after biopsy
collection. The clinical effective concentration for Arimidex in patients was found in literature to be
at 13.7 µg/L (45 µM) [40]. The Css (45 µM) and 1/3 (15 µM) of the Css were the concentrations tested
on these patient tumor biopsies that, in the clinical setting, received Arimidex treatment following
biopsy and had the clinical outcome after that treatment reported as response to treatment or resistance.
Survival of EpCAM+ BCa cells after Arimidex treatment correlated with the reported clinical outcome.
While EpCAM+ BCa cells from patient SH-8 with the “resistance” clinical outcome clearly revealed
little to no effect of Arimidex at 45 µM, EpCAM+ BCa cells decreased to 49 and 17% for patients with
moderate and strong responses to treatment at Css (45 µM) concentrations, respectively (Figure 7d).
These results highlighted the feasibility of the precision-based capabilities of HuP3D cultures for the
prediction of therapeutic efficacy. Finally, Figure 7e recapitulates the gating strategy used to detect BCa
cells in 3D cultures where we were able to differentiate them from the other cellular TME components
of the tumor biopsy by identifying BCa cells as CD45-/CD44+/EpCAM+ cells.
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Figure 6. HuP3D culture drug metrics correlate better than other in vitro models with clinical data.
(a) A representative cartoon of the correlation studies using literature search metrics from 2D models
(IC50), literature search metrics from other 3D models (IC50), and HuP3D metrics, as well as effective
concentrations in patients from phase I or II studies that examined the pharmacokinetics of the tested
chemotherapies (steady state concentration, Css) and examples of low positive and high positive
correlations. (b) Pearson correlation (r) and p significance values of (i) literature 2D IC50 and clinical
Css; (ii) literature 3D IC50 for other 3D models and clinical Css; (iii) HuP3D IC50 and clinical Css.
(c) Dot plot visualization of the Pearson correlation (r) and p significance values generated in Seurat.
Color of the dot indicates the Pearson correlation of HuP3D metrics and clinical Css, other 3D IC50,
and 2D IC50, and the size indicates the significance of the correlation. (d) Violin plot of the Pearson
correlation coefficient (r) values of HuP3D metrics compared to 2D IC50, other 3D IC50, and clinical Css.
(e) Correlogram showing the Pearson correlation coefficient (r) values for IC50, Emax, AUC, EC50, Einf,
GR50, GRmax, GRAOC, GEC50, and GRinf metrics in HuP3D cultures.
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Figure 7. HuP3D cultures promote growth of patient biopsy material (fresh or frozen) and recreate
therapeutic responses shown in patients in an in vitro environment. (a) Patient biopsies and blood
samples were obtained from BCa cancer patients. Tissue biopsies were either enzymatically digested
into single cells or processed into small organoid tissue sections. Both tissue processing methods (single
cells and organoids) were grown in HuP3D cultures made from the matching patient plasma. (b) Cell
proliferation in HuP3D cultures that have been cultured for 3 and 7 days, shown as fold of γ0, either as
single cells or small organoids, n.s., not significant (mean ± SD, n = 3). (c) Cell proliferation in HuP3D
cultures that have been cultured for 3 and 7 days, shown as fold of γ0, either as fresh cells or as the
same cells subjected to a freeze/thaw cycle (frozen), n.s., not significant (mean ± SD, n = 3); (d) Effect
of increasing concentrations of Arimidex (7 days) on primary BCa EpCAM+ cell survival in HuP3D
cultures, (*) p < 0.05 compared to control, n.s., not significant (mean ± SD, n = 3). (e) Gating strategy
for analysis of patient biopsy material grown in HuP3D cultures. Data acquisition was completed by
collecting information for a specified number of events determined by counting beads. Firstly, cellular
populations were isolated from beads then singlets were gated. Cell populations were further selected
and the live cell population identified by live/dead viability marker. Following this, CD45- FITC cells,
EpCAM+ (CD326+) PeCy7 cells, and BV605 (CD44+) cells were identified from the live cell population.
Fluorescence minus one (FMO) controls were used to set the gating for each population FITC (CD45),
PeCy7 (EpCAM), and BV605 (CD44).
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3. Discussion

The majority of BCa deaths are associated with recurrence or the spread of the disease [4,5].
When a patient is initially diagnosed, physicians have an arsenal of treatment regimens to choose from.
However, a standard clinical treatment is used in BCa patients despite the fact that the BCa population
is highly heterogeneous [6–8]. The main molecular subtypes of breast cancer are luminal A, luminal
B, HER2 positive, and basal-like (triple negative). These intrinsic molecular subtypes have been
associated with accurate predictions of recurrence and survival, especially for luminal tumors [41,42],
and as predictors of therapeutic response [42,43]. The cellular crosstalk of a tumor and its TME is also
a key contributor to clinical outcomes and responses in BCa patients [22,23,44–47]. Identifying patients
who would respond well to specific drugs and those who may be most likely to exhibit resistance to
them is a tremendous challenge. These features may explain why recurrence might lead to terminal
outcomes and highlights a clear and urgent need for accessible models that can accurately predict
responses to therapies for each individual patient prior to the development of recurrence.

Monolayer culture models have been widely employed to understand BCa over the past several
decades, however, these 2D models still exhibit limited success in recreating the complexity of the
disease [48,49]. Spheroids, organoids, 3D scaffolds, and PDX models are the most relevant alternative
culture techniques. Although PDX results are often clinically relevant, to decrease animal distress,
scientists are tasked to find alternative methods that replace, reduce, and refine the use of animals [50].
Consequently, other 3D cell-based assays are widely accepted and have proven to be versatile; they cut
time, animal use, and cost, while facilitating more replicates and high-throughput endpoints [51–56].
Ideally, such platforms would include cancer-specific architectures, relevant biomechanical components,
and cellular interactions (stroma-cancer and cell-extracellular matrix) found in patient tumors that assist
in considering their inherent heterogeneity. Unlike other 3D culture models developed from exogenous
materials such as Matrigel and other polymers [26,57–59], our 3D culture model is comprised of human
blood plasma (patient-specific). In contrast to synthetic or not-patient derived ECMs, the use of a
plasma-derived model provides a “blank slate matrix” where the cells have the ability to produce their
highly specific ECMs and in turn avoid the incorporation of exogenous materials in the experimental
models that might introduce undesired confounding artifacts to the recreation of tumor behaviors.
Inclusion of artificial ECM components may affect the tissue stiffness of the artificial matrix, directly
influencing drug accessibility or cellular behavior in in vitro screenings [60]. Of note, the use of human
plasma (fibrinogen cross-linking to fibrin) as the matrix not only supports cell structure [61,62], but it
also serves as a reservoir for nutrients, growth factors, cytokines, extracellular vesicles, and signaling
molecules that help with the development of more personalized models [30,63–66]. Even though the
composition of plasma proteins is not abundant in tumor tissue, cells in our plasma-matrix model
enhanced the secretion of TME components relevant to the disease. We have previously shown that
ECM proteins such as collagen and fibronectin are secreted by BCa cells in HuP3D cultures [66].
EV secretion was also enhanced in HuP3D when compared to 2D. It should be clarified that the
differences between the number of particles/mL and the EV protein concentration are reflecting the
measurement of any particle isolated by ultracentrifugation in comparison to the actual protein
measurement. Enhanced secretion of EVs in 3D models has previously been reported [67]. Finally,
human plasma was found to be an excellent reservoir for cytokines involved in key cancer hallmarks
including: pro-inflammatory cytokines (IL-β1, MIP-1a, TNFα, and RANTES) [68,69], chemokines
influencing the invasiveness and migration (SDF-1) [70], cytokines supporting tissue repair/ECM
degradation and remodeling (TIMP1, TIMP2, MMP1, and MMP9) [71,72], and cytokines promoting
cell growth (INF-γ, PDGF-AB, IL-2, and LIF) [69,73]. In addition, cytokines involved in fibrogenesis
(EGF, IGF-I, HGF, and PDGF-AB) [74,75] were found in plasma from healthy subjects and BCa patients.
CA125 is a common blood marker tested in breast cancer and ovarian cancer and it allows for the
identification and distinction of the plasma from BCa patients [76,77]. Although the plasma fibrinogen
level may be considered a possible marker for the clinical response and prognosis of patients with
breast cancer [78], we were able to observe a slightly increased fibrinogen level in our BCa samples,
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but not enough to be significant in the samples used in our studies. This similarly allows for a more
relevant comparison among the HuP3D cultures using either healthy or BCa patient plasma.

HuP3D chemical characterization allowed us to define the optimal cross-linking and stabilization
conditions in order to further develop HuP3D cultures. Calcium chloride was selected as the
recommended cross-linker component, even though all the other tested options yielded favorable
outcomes. The main reasons for this decision were 1) it had the fastest cross-linking time to avoid cell
settling at the bottom of the gel, 2) thrombin and factor XIII are enzymatic clotting factors while CaCl2
is an ionic compound that is readily available and naturally present during blood coagulation [79–81],
and 3) price. Cross-linking time and cross-linking concentrations can affect the mechanical properties
of the HuP3D cultures, in turn affecting cellular response [82,83]. Further characterization of the
additional cross-linkers not used in HuP3D cultures would be needed in order to determine the possible
implications on cellular responses for those components. Optimization of the cross-linker concentration
is fundamental. As an example, increased concentrations of CaCl2 higher than the recommended dose
revealed a less efficacious cross-linking time. These results could be explained by the presence of free
calcium ions after reaching optimal plateau concentrations which could affect fibrinogen cross-linking
capacity [84]. AMCHA was selected as the suggested antifibrinolytic based on its capacity to induce
the highest weight gain in the matrix when compared to the other antifibrinolytics.

Furthermore, the aspiration for the development of model systems for cancer modeling that
more closely resemble human physiology is currently an area of high emphasis. We hypothesized
that HuP3D cultures would support the growth and expansion of primary breast cancer tumors,
as well as allow for the screening of cancer drugs for further prediction of clinical therapeutic efficacy.
While many studies have shown the crucial role of the TME in tumor progression in BCa [85–87],
surprisingly few have focused on the comparison of the HME and TME. This importance of malignant
versus healthy microenvironment on tumor progression has been successfully demonstrated in other
types of cancer [88]. Additionally, cellular function can be altered by growth on 3D substrates and
these alterations can be dependent on the 3D membrane concentration [89]. To date, there are no
good quantitative models which allow for the deep characterization and experimental manipulation
of the role of the TME in tumor progression. Our technology provides the basis to address these
problems. HuP3D cultures confirmed the significant role of the TME in cancer progression in BCa cell
lines, revealed through cell survival signaling pathways (pAKT and Ki67), while apoptosis pathways
remained unaltered (cleaved caspase 3) (Figure 2). Some cell lines did not show an increase in cell
proliferation rate at day 7 compared to day 3 in either mono-cultures or when co-cultured with HME.
These results could be explained by biological changes that occur in 3D cultures including, but not
limited to, changes in cell polarization and differentiation [90] and changes in cytoskeletal elements
and extracellular matrix proteins secretion or deposition [91] over the duration of the proliferation
time period. It is important to emphasize that primary BCa cultures in HuP3D models contained
BCa cells and all the accessory TME cellular components from the original biopsy, recapitulating the
in vivo environment of the BCa cells in a 3D culture with plasma containing key signaling molecules
from the same patient. In addition, HuP3D cultures demonstrated two successful methodologies to
grow primary patient material as well as confirming consistent growth from fresh or frozen biopsies.
We found the single cell suspension methodology appealing when sorting, and the separation of a
distinct cell population was of interest for the downstream analysis. However, organoids allowed
us to preserve the original tumor architecture, which could heavily affect progression and drug
resistance [92–94]. These results revealed a great opportunity for open collaborations, as biopsies can
be frozen and preserved for future use in our studies, so we can receive samples from collaborators
in order to perform custom screenings, and we have two successful techniques for material growth
in the case of minimal initial tumor biopsy material. Common problems in biopsy collection that
could impact future studies include the method of sample preservation and processing, tissue quality,
the amount of tumor contained within the tissue collected (especially in pre-chemotherapy groups),
as well as heterogeneity amongst the samples from each patient’s tumor [95].
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The IC50 is the most commonly reported drug response metric [96], but unfortunately, in many
cases, it has been used incorrectly. Traditionally used drug response metrics, such as IC50 or EC50,
do not take into account the initial cell population (γ0) and the number of cell divisions during the
course of the assay, which can vary amongst different cell lines, due to the fact that they depend on
cell density, media composition, and experiment duration [39]. In our studies, to overcome these
limitations of traditionally used drug response metrics based on relative cell count, we also determined
growth rate (GR) metrics. GR parameters are more suitable to be calculated in our drug response
assays because they consider the initial cell population and the differences in the growth rates among
the BCa cell lines in the HuP3D cultures. Our studies looked at whether differences in cell growth
rates of cancer cells in the HuP3D and a wide variety of drug metrics could radically impact drug
responses, leading to an incomplete picture when predicting drug efficacies. We detected a significant
heterogeneity among the different BCa cell lines, drugs, and drug response metrics, suggesting the
need for the use of more than one type of drug response metric to predict drug efficacy and the
requirement of a method for personalized prediction of therapeutic response. Relevant examples of
the importance of including different metrics to measure drug effect include, for example, the effect of
docetaxel on MDA-MB-231 and ZR-75-1. While looking at relative cell count, docetaxel was cytotoxic
for MDA-MB-231 and cytostatic for ZR-75-1, but on the GR value curves the responses are inverted
with a cytotoxic effect for ZR-75-1 and a cytostatic effect for MDA-MB-231. The incorporation of
the initial cell population and the differences in the growth rate of these cell lines did indeed affect
the initial assumptions of response [37,39]. Some of the described metrics showed higher variation
between biological replicates. These results could be explained by underlying biological mechanisms
or by the standardization of assay methodology. Automated plating and dosing will help to increase
consistency, precision, and reproducibility [97]. Drug response metrics based on relative cell count
could be influenced by the number of cell divisions or plating density as these metrics do not take into
account the initial cell population and the number of cell divisions during the course of the assay [37,39].
GR metrics could be influenced by the potency and efficacy of the drug and resistance profiles of the
cell lines [29], as well as by the temporal dependence of drug response [97]. In addition, both types of
metrics could be affected by the intra-assay variability due to the fact that the matrix is generated from
plasma from non-matching subjects. Plasma could be pooled in batches to attenuate this effect in cell
lines where matching plasma is not available. Additionally, further studies will look into combination
therapies of chemotherapeutic drugs, natural compounds, or monoclonal antibodies in order to provide
more effective strategies for treating BCa due to the resistance of BCa cells and the various side
effects of current treatments [98,99]. Drug efflux mechanisms will be further evaluated in HuP3D
cultures, due to the fact that an elevated efflux of anticancer agents, leading to decreased intracellular
drug accumulation, has been considered to be the major reason for chemotherapy resistance [99,100].
Further studies should also evaluate how cancer cells in 3D coordinate their activity to respond to
drugs at different stages of their growth and development. Furthermore, the comparison of the drug
response metrics from our HuP3D model to the IC50 values obtained from literature search metrics for
2D or other 3D models, with effective chemotherapeutic concentrations in phase I or II clinical trials
patients (Css), revealed a very poor, positive correlation between Css and 2D models and a moderate
correlation with other 3D models. Of note, the other 3D models group included PDX, spheroids,
organoids, and 3D scaffolds as a combinatory group in order to obtain enough significant information
from published literature for the seven drugs to establish Pearson correlations. We acknowledge that
it will have an added value to compare to each of them separately, but it was complicated to gather
enough references for each group for all the drugs. The metrics Einf and GEC50 did not correlate well
with Css or with any of the other HuP3D metrics. A particular problem with GEC50 is that this metric
is relevant for drugs that have poor potency and that do not reach a GR value below 0.5. If the fit of the
curve is not significantly better than that of a flat curve, the parameter is set to 0 [37,39]. Furthermore,
our data showed a big variability for MCF7 GEC50 values. Some problems also appear with Einf where,
when the dose response curves reach a plateau at the highest tested concentrations, the value for Einf
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is similar to Emax. Emax depends on the concentration range used in the assay, thus, both metrics
should be used with caution when comparing them to other studies using a different concentration
range [37]. On the other hand, a significant and strong correlation with clinical effective concentrations
was found for eight of the HuP3D metrics (seven positively correlated and one negatively correlated).
Additionally, there was a very weak correlation between HuP3D metrics and 2D models and a moderate
correlation to other 3D models, revealing similar profiles as those for HuP3D and Css. These results
just confirm that the 2D cell culture models cannot efficiently predict the therapeutic response and
the effective drug dose in cancer patients, due to their inability to represent the TME heterogeneity.
Despite a good response in 2D tissue culture and PDX models, many patient tumors have shown a
chemoresistance profile [101]. There have been a good number of drug response studies done that
compare the 3D models with monolayer cell cultures and their clinical outcomes, and all of them
conclude that 3D models are more suitable to predict drug responses in a precision-based manner in
accordance with clinical effective concentrations [48,49,58,102,103]. Dhiman et al. carried out inhibition
studies of different concentrations of tamoxifen for six days in MCF7 monolayer and 3D chitosan
cell cultures and demonstrated that 3D models exhibited an increased resistance to tamoxifen when
compared to 2D cell cultures, and a higher dose of the drug was needed to achieve a comparable
cytostatic effect in 3D [104]. Imamura et al. compared the growth rate of 2D and 3D models using BCa
cell lines and patient-derived xenografts in the presence of paclitaxel, doxorubicin, and 5-fluoro-uracil
at concentrations of 0.1, 1, and 10x to the AUC values obtained in clinical pharmacokinetic studies
and saw that 3D cell culture models are a significantly better choice in simulating important tumor
characteristics and drug resistance [48]. Hongisto et al. compared 63 drug responses in JIMT1 BCa
cells grown in monolayer, 3D poly (2-hydroxyethyl methacrylate), and 3D Matrigel cell culture models
and observed high discrepancies between the models, where the Matrigel 3D model had significantly
higher drug sensitivity than the others, suggesting that 3D cultures are a better alternative to traditional
2D cell cultures and can provide a platform for high-throughput drug screening. The composition,
however, of the 3D model influences the drug response [103]. Breslin and Driscoli reported drug
response assays with docetaxel and neratinib in HER2-positive BCa cell lines in 2D and 3D poly-HEMA
models and found that 3D models are more drug resistant than monolayer cell cultures, which could be
facilitated by upregulating drug transporters and receptor proteins and metabolizing enzyme activity.

All in all, there are some limitations when it comes to the use of a comparative analysis between
the drug response metrics from literature searches of different cell culture models and actual studies.
Haibe-Kains et al. compared the IC50 and the AUC of 15 drugs in 2D cultures of 471 cell lines which
were reported in two large-scale pharmacogenomics (Cancer Genome Project and Cancer Cell line
Encyclopedia) and consisted of vast discrepancies. Only one drug had a moderate Spearman correlation
coefficient in the measured response (rs = 0.61) and one had a relatively fair correlation (rs = 0,53),
while the IC50 could not be estimated in many cases [105]. Furthermore, there are clear differences
between the cell growth rates in 2D and 3D platforms that make it difficult to compare the drug response
metrics across them and even raises the question whether or not the same reporting tool should be
used. Brooks et al. reviewed 25 publications of 2D and 3D chemotherapeutic drug screening assays
and found many difficulties that can affect drug metrics comparisons [29]. Some studies reported an
IC50 value despite the fact that the drug was not effective enough to reduce the cell population by half.
In some literature cases, they noticed that the EC50 and GI50 were confused for the IC50, which was
interpreted in the context of growth inhibition. Moreover, they identified that in the highly potent
drugs, the IC50 does not differ much between publications, however, when the drug sensitivity is
moderate or low, IC50 values tend to be extremely variable in 2D and even more remarkably variable
in 3D culture models. All these discrepancies are formed because the drug response metric values
may depend on the experiment protocol (medium, cell type, time of incubation, etc.), the composition
of 3D models (stromal cells, ECM, different biomaterials, etc.), type or length of the assay, and the
method of analysis (MTT, flow cytometry, ATP, etc.). Furthermore, it is important to bear in mind that
researchers can use different forms of a nonlinear regression equation to calculate the drug response
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metrics and utilize different methods to handle problems such as outliers. Additionally, there are
some parameters that cannot always be calculated due to the shape of the fitted curve (IC50, GEC50)
or when the cells do not grow exponentially (GR50), and some of them should be used carefully in
a comparison analysis between assays with a different concentration range (Emax and AUC) [29].
Despite all these limitations, our results showed the feasibility and efficacy of the HuP3D drug response
metrics to predict clinically effective therapies better than current preclinical models. Our model is also
compatible with high-content imaging and high-throughput applications. However, despite the fact
that 3D cultured cancer cell lines can reflect better physiological features of the cells than conventional
2D models, the forced 3D architecture incorporating cancer cell lines does not recapitulate the original
tumor characteristics and cell-cell interactions with accessory tumor components. For that reason,
we believe that the growth of primary tumors for use in drug screening using our model will better
reflect the physiological features of an actual patient’s cancer and better predict the clinical efficacy.

The field of “personalized” medicine is a burgeoning area of research where the clinical use of such
“precision” or “targeted” treatment approaches in the role of oncology are growing rapidly [104,106,107].
Traditionally, such capabilities have been limited to in vitro for PDX, greatly limiting the treatment
options for cancer patients in a short-time therapeutic window. HuP3D culture drug screening assays
gave therapeutic responses in only one week, while the PDX models will take months. Using a
small cohort of BCa patients with very distinct responses to the same chemotherapeutic treatment,
we were able to retrospectively predict the same clinical outcomes detected in the clinical setting.
These results emphasize the unique capabilities of HuP3D cultures as a reproducible, human-derived,
high-throughput in vitro culture model for demonstrating drug sensitivity and clinical efficacy.
Employment of a high-throughput human model could provide enormous cost savings in clinical
studies by validating therapies in improved preclinical models [108–110]. However, much work needs
to be done, as our understanding of the potential efficacy of targeted treatments remains quite limited
but continues to grow. It has become clear that the identification of a particular genomic alteration often
does not correlate with clinical efficacy when an agent “targeting” that alteration is utilized [111–113].
We will further investigate the efficacy of novel treatment options in a focused fashion utilizing HuP3D
cultures, which we hypothesize will be a more accurate representation of in vivo activity of these novel
targeted agents. This will expand our understanding of the underlying biology of this malignancy,
help guide our understanding as to the potential benefit of novel agents, and perhaps eventually allow
us to perform patient-specific drug sensitivity testing to guide patient care if this model is further
validated in a prospective setting. This goal fits seamlessly into our mission to advance our knowledge
of cancer and to provide novel and effective treatment options for our BCa patients. Personalized
prediction of therapeutic efficacy will directly address the overarching challenge existing in BCa of
preventing the mortality associated with recurrence of the disease by providing the ability to predict
therapeutic efficacy in each BCa patient case with a more targeted, effective, and less toxic treatment
regimen, saving not only medical costs but also women’s lives.

In summary, HuP3D efficiently supported the growth and expansion of BCa cell lines and primary
breast cancer tumors. Significant and strong correlations between clinical effective concentrations
in patients were found for eight out of ten metrics for HuP3D, revealing the HuP3D culture model
as a feasible and efficacious platform for supporting the growth and expansion of BCa, allowing
high throughput drug screening and predicting clinically effective therapies better than current
preclinical models.

4. Materials and Methods

4.1. Reagents

Type I collagenase, trans-4-(aminomethyl)cyclohexanecarboxylic acid (AMCHA),
thrombin, factor XIII, aprotinin, calcium chloride (CaCl2), epsilon-aminocaproic acid
(EACA), 4-aminomethylbenzoic acid (PAMBA), and dimethyl sulfoxide (DMSO) were
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purchased from Sigma-Aldrich (Saint Louis, MO, USA). Fluorescent cell trackers such as
3,3′-dioctadecyloxacarbocyanine perchlorate (DiO, excitation, 488 nm; emission 525/50 nm),
1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine perchlorate (DiD, excitation, 635 nm;
emission, 655–730 nm), and DiIC18(7) (1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine
iodide) (DiR, excitation, 750 nm; emission, 780 nm) were purchased from Invitrogen (Carlsbad,
CA, USA). Drug treatments for cell line studies including methotrexate (MTX), paclitaxel (PTX),
capecitabine (CAP), cyclophosphamide monohydrate (CYCLO), carboplatin (CARBO), epirubicin
hydrochloride (EPI), and docetaxel (DTX) were purchased from MedKoo (Morrisville, NC, USA).
Drug treatment of patient material using Anastrazole (Arimidex) was purchased from Selleck
Chemicals (Houston, TX, USA).

4.2. Cell Lines

Breast cancer (BCa) cell lines representing different molecular subtypes (luminal A: MCF7,
ZR-75-1, HER2: MDA-MB-453, SK-BR-3 and triple negative: MDA-MB-231) (see Table 1) were used
for experiments. All cells were cultured at 37 ◦C, 5% CO2; ZR-75-1 and SK-BR-3 cells in RPMI-1640
media with L-glutamine (Corning CellGro, Mediatech, Manassas, VA, USA) and MCF7, MDA-MB-453,
and MDA-MB-231 in DMEM media with L-glutamine, 4.5 g/L glucose and sodium pyruvate (Corning
CellGro, Mediatech, Manassas, VA, USA) supplemented with 10% (V/V) fetal bovine serum (FBS,
Gibco, Life Technologies, Grand Island, NY, USA), 100 U/mL penicillin, and 100 µg/mL streptomycin
(Corning CellGro, Mediatech, Manassas, VA, USA). Labeling of BCa cells (1 × 106 cell/mL) was done
prior to experiments with DiO (10 µg/mL), DiD (10 µg/mL), or DiR (10 µg/mL) by incubation of cells
with the surface marker for 1 h.

4.3. Human Samples

Tissue biopsies were obtained from BCa cancer patients undergoing a tumor biopsy and healthy
subjects undergoing breast surgery from the Sanford USD Medical Center, Edith Sanford Breast
Cancer Center and Sanford Biobank in Sioux Falls, SD. Healthy subjects are defined as patients with
abnormal growths or other deviations in the breast tissue determined by the pathologists to be normal
or benign, non-cancerous tissue. Informed consent was obtained from all subjects with approval from
the Sanford Health Institutional Review Board and in accordance with the Declaration of Helsinki.
Tissue biopsies were weighed, pre-washed, and minced into pieces approximately 0.2 mm2 with a
sterile scalpel and forceps. Minced tissue biopsies were enzymatically dissociated in dissociation
buffer (0.1% w/v type I collagenase and 3mM CaCl2 solution), using a guideline of 1 mL dissociation
buffer per 100 mg tissue, followed by sequential filtration for the generation of small organoids and
single cell suspensions. Small organoids were directly grown in culture or stored frozen for further
analysis. Single cell suspensions were counted. Single primary cell suspensions from healthy breast
tissue were further identified as a healthy microenvironment (HME). Primary CD44+ and CD44- cells
(identified as the tumor microenvironment (TME) cellular component) were sorted from the digested
BCa patient biopsies using magnetic-bead sorting with Miltenyi beads, following manufacturer
instructions. Single cell suspensions were then either grown in culture or stored frozen for further
analysis. Peripheral blood from BCa patients or healthy subjects was obtained using venipuncture and
collected in whole blood collection tubes (BD Lavender K2-EDTA Vacutainer, except for fibrinogen
assay samples in which blood was collected in the BD Blue Sodium Citrate Vacutainer). Plasma was
separated using centrifugation at 800 × g for 10 min; then, plasma was subjected to a secondary spin at
400× g for 10 min, immediately aliquoted, and stored at −80 ◦C.

4.4. Development and Characterization of HuP3D Cultures

HuP3D cultures are formed through the cross-linking of fibrinogen found naturally in plasma
(Figure 1a). Cross-linking time was assessed by measuring the time necessary to achieve matrix
cross-linking using three relevant cross-linkers of the blood coagulation process [79,80,114] including
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thrombin (0–5 mg/mL), CaCl2 (0–5 mg/mL), and factor XIII (0–6 mg/mL) (Figure 1c). The stabilization
effects of preventing fibrin degradation and stability improvement in the scaffold were assessed
by surveying several chemical antifibrinolytic agents including AMCHA (0–10 mg/mL), aprotinin
(0–550 mg/mL), EACA (0–2.5 mg/mL), and PAMBA (0–2.5 mg/mL). The stability of the scaffold
was studied by measuring each scaffold weight at day 0 and again measuring scaffold weight at
the conclusion of a three-week time period (Figure 1d). CaCl2 and AMCHA were selected as the
recommended components for all future studies. After initial HuP3D characterization, the following
methodology was utilized for the remaining experiments: a mixture of plasma, primary cell suspension
(3–5 × 104 cells/scaffold) in RPMI-1640 or DMEM complete media, AMCHA, and CaCl2 was prepared
with a 4:4:1:1 volume ratio, respectively. In order to avoid intra-assay variability due to the matrix,
plasma was pooled in batches. HuP3D scaffolds were allowed to incubate at 37 ◦C with 5% CO2 to
cross-link in a 96-well plate or 8-well chambered slide for 3 h before the addition of completed DMEM
or RPMI-1640 media on top of the scaffolds to prevent drying. Media was changed every 2–3 days for
the duration of each experiment.

HuP3D culture scaffold structure and morphology was analyzed with scanning electron microscopy
(SEM) using a FEI Quanta 450 scanning electron microscope at multiple magnifications as well confocal
microscopy using a Nikon Ti2-A1TR confocal microscope (10× dry objective, 2.5×magnified) with
images being analyzed using NIS Elements software (Nikon Instruments, Melville, NY, USA).

4.5. Fibrinogen Content in Plasma

Plasma from BCa patients and healthy subjects was sent to Sanford Laboratories where the
fibrinogen content of each sample was determined through the clotting method of Clauss [115].
Clauss fibrinogen assay is a quantitative, clot-based, functional assay. The assay measures the ability
of fibrinogen to form a fibrin clot after being exposed to a high concentration of purified thrombin.
Briefly, plasma samples were loaded into the STA-R Evolution Expert Series Hemostasis System
(Diagnostica Stago Inc., Parsippany, NJ, USA), and automated testing was carried out by the analyzer.
Control reagents were prepared and run to confirm accurate and reproducible results.

4.6. Cytokine Expression in HuP3D Cultures

The effect of cytokines contributed by healthy and cancerous plasma used in the HuP3D model
was tested using a custom cytokine antibody array. Acellular HuP3D cultures were created with either
plasma from a healthy subject or plasma from a BCa patient using serum-free media following the
recipe previously described. After chemical cross-linking and stabilization was complete, the cultures
were disrupted with a lysis buffer (created by combining RIPA buffer, PMSF (1:10), DMOG (1:10),
DTT (1:5), phosphatase cocktail 2 and 3 (1:100)) and sonication. HuP3D culture supernatants were
collected and analyzed using a C-Series Custom Cytokine Antibody Array (RayBiotech Inc., Norcross,
GA, USA), according to the instructions provided by the manufacturer. The custom cytokine array
includes the following cytokines: interleukin beta 1 (IL-β1), macrophage inflammatory protein 1 alpha
(MIP-1a), tumor necrosis factor alpha (TNF-α), regulated upon activation, normal t cell expressed
and presumably secreted (RANTES), CA125, epidermal growth factor (EGF), insulin-like growth
factor 1 (IGF-1), hepatocyte growth factor (HGF), platelet-derived growth factor AB (PDGF-AB),
interferon gamma (INF-γ), interleukin-2 (IL-2), stromal derived factor 1 (SDF-1), leukemia inhibitor
factor (LIF), tissue inhibitor of metalloproteinase 1 (TIMP-1), tissue inhibitor of metalloproteinase 2
(TIMP-2), matrix metallopeptidase 1 (MMP-1), and matrix metallopeptidase 9 (MMP-9). Images of the
chemiluminescence signals of each of the membranes were captured using a LI-COR Odyssey (LI-COR
Biosciences, Lincoln, NE, USA) device with a 2 min exposure time. The chemiluminescence signal
intensity of each spot was quantified using densitometric analysis (VisionWorks Software, Upland, CA,
USA). Values for each cytokine were established by initially subtracting negative controls and then
normalizing to positive controls for each of the membranes. Complete scanned array is included in
Figure S4.
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4.7. Proliferation Analysis by Flow Cytometry of BCa Cell Lines

The five breast cancer (BCa) cell lines were previously labeled with DiO and incorporated in
HuP3D cultures either alone, in co-culture with HME (2.5 × 104 cells/scaffold), or in co-culture with
TME (2.5 × 104 cells/scaffold). These cultures were grown and analyzed at days 0.5 (γ0), 3, and 7.
On each day of analysis, HuP3D cultures were enzymatically digested with type I collagenase at a
concentration of 20 mg/mL for 2–3 h at 37 ◦C. After 2–3 h of incubation, samples were prepared in PBS
for flow cytometry by adding counting beads (424902, Biolegend, CA, USA) in addition to Sytox blue
dead cell stain (excitation 358 nm; emission 461 nm) (S34857, Thermo Fisher Scientific, MA, USA) for
viability to each sample. BCa cells were identified by gating live cells with a DiO+ signal using the
FITC channel on the BD FACS LSRFortessa SORP (BD Biosciences, San Jose, CA, USA). A minimum of
5 × 103 events was acquired per sample and the FACSDiva v.6.1.2 software was used to collect and
interpret data. BCa cell counts were acquired and data was analyzed using FlowJo v10 (BD Lifesciences,
Ashland, OR, USA). Data was normalized to a predetermined number of counting beads, and the
proliferation of each condition (fold of γ0) was calculated and compared.

4.8. Cell Proliferation and Apoptosis Signaling

The breast cancer (BCa) cell lines (MDA-MB-231 and MCF7) were previously labeled with DiR
and incorporated in HuP3D cultures either alone, in co-culture with HME, or in co-culture with TME.
These cultures were grown and analyzed at day 7. HuP3D cultures were enzymatically digested,
and isolated BCa cells were fixed and permeabilized (Fixation Buffer: 420801, Biolegend, CA, USA;
10× Intracellular Staining Permeabilization Wash Buffer; 421002, Biolegend, CA, USA). Cells were then
stained with V450 conjugated anti-Cleaved Caspase 3 (560627, BD Biosciences, San Jose, CA, USA)
and AlexaFluor488 conjugated anti-pAKT (560404, BD Biosciences, San Jose, CA, USA) and analyzed
using flow cytometry. Fluorescence minus one (FMOs) samples were used as controls. BCa cells were
identified by gating cells with a DiR+ signal; then, the mean fluorescence intensity (MFI) of the cleaved
caspase 3 and pAKT signals was calculated for the BCa-DiR+ cell population.

4.9. Immunohistochemistry Studies (IHC)

HuP3D cultures containing BCa cell lines were processed as previously described [66,116].
Specifically, HuP3D cultures were fixed in 10% neutral buffered formalin and processed on a Leica
300 ASP tissue processor (Leica Microsystems, Buffalo Grove, IL, USA). Gel shrinkage can occur
during this processing. Paraffin-embedded 3D matrix sections were longitudinally sliced at 10 µm.
The BenchMark®XT automated slide staining system (Ventana Medical Systems, Inc., Oro Valley, AZ,
USA) was used for antibody optimization and staining. The antigen retrieval step was performed using
Ventana CC1 solution, which is a basic pH Tris-based buffer. Both primary and secondary antibodies
were prepared in a 1X permeabilization buffer (BioLegend, San Diego, CA, USA). A Ventana iView
DAB detection kit was used as the chromogen, and the slides were counterstained with hematoxylin.
Anti-Ki-67 (CRM325, 1:100, Biocare Medical, Pacheco, CA, USA), and anti-cleaved caspase 3 (CRM229,
1:100, Biocare Medical, Pacheco, CA, USA) primary antibodies were used. The omission of the
primary antibody served as negative control. Secondary antibodies used were biotin-conjugated goat
anti-rabbit IgG (111-065-144, 1:1000, Jackson ImmunoResearch, PA, USA) and biotin-conjugated donkey
anti-mouse IgG (715-065-151, 1:1000, Jackson ImmunoResearch, PA, USA), respectively. IHC images
were imaged using an Aperio VERSA Bright field Fluorescence & FISH Digital Pathology Scanner
(Leica Biosystems, Buffalo Grove, IL, USA).

4.10. Confocal Imaging and Analysis

Growth and dissemination of BCa cells-DiO within the HuP3D scaffolds was observed using
confocal microscopy at day 3 and day 7. The HuP3D structure was formed in an 8-well Thermo
Scientific™Nunc™ Lab-Tek™ II Chambered Coverglass with a No. 1.5 borosilicate glass bottom and
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covered with DMEM or RPMI-1640 media. The culture tray was imaged using a Nikon Ti2-A1TR
confocal microscope with a 10× objective lens (Nikon Instruments, Melville, NY, USA). Culture cells
were exposed to 488 nm (DiO) excitation, and the light emissions at 500–530 nm were collected
as a z-stack image of each scaffold with a depth of roughly 0.5 mm to 1 mm using a step size of
2 µm. The frame size of the image was 512 × 512 pixels, which was taken at a rate equivalent to
1 µs/pixel. For analysis, the cells within each of the HuP3D cultures were measured using various
multi-step automated modules within the NIS Elements (Nikon Instruments, Melville, NY, USA)
software. In the first step, a threshold using the GFP (DiO) channel was created to map the cells
of interest. Briefly, a binary was created using the auto detect feature. To avoid bias, the smallest
object was used to generate the binary via the auto detect feature. Values corresponding to different
features of interest including EqDiameter, circularity, elongation, and mean intensity were obtained.
To determine clustering, binary restrictions were employed for each parameter that ranged between
the largest observed value as the upper confidence interval and 50% higher than the calculated mean
value as the lower confidence interval. The number of objects inside this chosen range were selected as
positive clusters. For each condition, all detected cells were analyzed per experiment.

4.11. Extracellular Vesical Isolation and Corresponding Vesical Characterization

Extracellular vesicles (EVs) were isolated and characterized in a similar manner to previously
described methods [66,117]. In order to account for the presence of extracellular vesicles in plasma and
the newly generated extracellular vesicles from cells in traditional 2D cultures compared to HuP3D
cultures, we systematically isolated and characterized the EVs from plasma in culture media with
no cells, plasma in 2D with cells, and plasma in HuP3D cultures with cells (MDA-MB-231 BCa cells,
1 × 106 cells). RPMI-1640 media was supplemented with plasma instead of 10% FBS, and the plasma
volume was adjusted to be equal in all conditions (HuP3D cultures contain plasma in the matrix as
well as in the top cultured media). Cultures were grown for three days before the HuP3D cultures were
enzymatically digested with collagenase and the liquid from all conditions was collected separately
to purify and characterize the extracellular vesicle component. Extracellular vesicle purification was
completed using differential ultracentrifugation starting with centrifuging the samples at 2500× g for
10 min in a Thermo Legend X1R centrifuge (Thermo Fisher Scientific, Waltham, MA, USA), twice,
to pellet out cells. These cells were counted for further characterization of the extracellular vesicles.
The supernatant collected after the first centrifugation was subjected to a second centrifugation step
at 13,000× g for 30 min, twice, in the Sorvall RC+6 centrifuge using the F13–14 × 507 rotor (Thermo
Fisher Scientific, Waltham, MA, USA),. The supernatant was again collected and finally the samples
were exposed to a final centrifugation step at 117,000× g for 2 h using a WX80 Ultracentrifuge and a
SureSpin 630/17 rotor (Thermo Fisher Scientific, Waltham, MA, USA),. Extracellular vesicle pellets were
washed in PBS, and the previous centrifugation step was repeated. After the final spin, pellets were
re-suspended in sterile PBS, and aliquots were frozen at −80 ◦C. Characterization of the extracellular
vesicles was performed using a BCA protein assay kit (Thermo Fisher Scientific, Waltham, MA, USA)
as well as dynamic light scattering (DLS) analysis using a Nanosight NS300 (Malvern Panalytical,
Malvern WR14 1XZ, UK). Extracellular vesicle preparations were analyzed using the SpectraMax Plus
384 (Molecular Devices, San Jose, CA, USA) and SoftMax Pro software. Absorbance was measured at
562 nm, and protein concentration was estimated from the values using the BCA standard curve with
a quartic model fit.

4.12. Dynamic Light Scattering (DLS) Analysis

Purified extracellular vesicles were characterized using dynamic light scattering (DLS) analysis
with a NanoSight NS300 particle analyzer (Malvern Panalytical) with a blue 488 nm laser and the
NanoSight NTA 3.3 software. 100 µL of each extracellular vesicle sample was diluted with filtered PBS
at a ratio of 1:6 which produced between 3 and 100 particles/frame for analysis. Initial adjustments
were made using the Auto Setup function and then manual fine tuning of the settings was completed to
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make extracellular vesicle particles clearly visible for analysis. A screen gain of 1–1.5 was selected and a
camera level 10–14 was used depending on the sample to create the desired particle visibility. A standard
operating procedure was setup to create five 60 s videos that were recorded using the Nanosight
instrument, and the particle size and concentration values were analyzed using the Nanosight NTA 3.3
software at a screen gain of 10 and a detection threshold of 20. A NanoSight microliter OEM syringe
pump module (Malvern Panalytical) was used to inject the sample using a syringe at a set flow rate
of 100.

4.13. Western Blot

Extracellular vesicle (EV) separation by mass was accomplished in polyacrylamide gel via
SDS-PAGE, then transferred to a polyvinylidene difluoride membrane via a Bio-Rad Trans-Blot Turbo
Transfer System, using the protocols established by the manufacturer. Membranes were then washed
twice for 5 min each in TBST (10 mM Tris pH 8.0, 150 mM NaCl, 0.5% Tween 20). Next, membranes
were incubated in 1:10 clear milk (ThermoFisher Scientific, Pierce Clear Milk Blocking Buffer, 1X) in
TBST, then incubated with an antibody against CD9 (1:1000, Santa Cruz Biotechnology, sc-13118, Dallas,
TX, USA) in a solution of 1:20 clear milk in TBST overnight (at least 12 h) at 4 ◦C. Membranes were
washed three times for 10 min each in TBST, incubated in 1:20 clear milk in TBST twice for 30 min,
then incubated with horseradish peroxidase (HRP) conjugated anti-mouse secondary antibody (1:3000,
Santa Cruz Biotechnology, sc-516102) and HRP conjugated anti-biotin secondary antibody (1:3000,
Cell Signaling, #7075, Danvers, MA, USA) in a solution of 1:20 clear milk in TBST for 1 h, protected
from light. After this, the secondary antibody was removed and the membranes were washed three
times for 10 min each in TBST. All washing and incubation steps were done at room temperature
with agitation unless otherwise specified. Immobilon Forte Western HRP substrate was added to
the membranes, and the membranes were imaged using a LI-COR Odyssey FC system (LI-COR
Biosciences). Complete scanned gel for western blot shown in Figure 3d is included in Figure S5.

4.14. Drug Screening of BCa Cell Lines in HuP3D Cultures Analyzed by Flow Cytometry

The five breast cancer (BCa) cell lines were previously labeled with DiD and incorporated
in HuP3D cultures. Half a day after plating, cells were treated with a DMSO control (γCtrl) and
increasing concentrations 0.1 nM–300 µM of seven standard-of-care chemotherapeutic drugs including
methotrexate (MTX), paclitaxel (PTX), capecitabine (CAP), cyclophosphamide monohydrate (CYCLO),
carboplatin (CARBO), epirubicin hydrochloride (EPI), and docetaxel (DTX). Treatments were added on
top of HuP3D cultures in order to simulate drug diffusion into a tumor. Treatments were refreshed at
day 4, and BCa cells were retrieved from the different cultures for analysis at day 0.5 (γ0) and day 7.
Samples were prepared in PBS for flow cytometry by adding counting beads (424902, Biolegend) in
addition to Sytox green dead cell stain (excitation 504 nm, emission 523 nm) (S7020, Thermo Fisher
Scientific, Waltham, MA, USA) for viability to each sample. BCa cells were identified by gating live
cells with a DiD+ signal using the FL4 channel on a BD Accuri C6 instrument (CFlow Software, BD
Biosciences, San Jose, CA, USA). A minimum of 5 × 103 events was acquired per sample, and BCa cell
counts were acquired and data was analyzed using the FlowJo v10 (BD Lifesciences, Ashland, OR,
USA) software.

4.15. Determining Drug Metrics Using the GR Calculator

GR calculator (http://www.grcalculator.org) was used to determine 10 drug treatment response
metrics for the HuP3D cultures based on either relative cell count (IC50, EC50, Emax, AUC, Einf) or cell
growth rate (GR50, GEC50, GRmax, GRAOC, GRinf) (Figure S3b). The IC50 is the most widely used metric
in drug treatment assays, where it is used to measure the drug efficacy and represent the inhibitory
drug concentration needed to reduce the cell population by half. EC50 is also an important metric that
characterizes the effective concentration of the drug that causes half of the maximal response. Emax is
the maximum effect of the drug or the number of viable cells at the highest drug dose used in the assay,

http://www.grcalculator.org
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and the AUC is the area under the viability curve which indicates the cumulative effect of the drug.
Einf indicates the drug effect at infinite drug concentration. The GR values show the partial inhibition
effect of the drug when it achieves GR values from 0 to 1, with the cytostatic effect being represented
when the value is equal to 0 and the cytotoxic effect being represented when it lies between 0 and −1.
GR50 is the drug concentration that reduces the cell growth rate by half, however, it is required that
the cells grow exponentially (γfinal/γ0 >2) in order to determine this metric. GEC50 indicates the drug
dose that causes half of the maximal effect on the cell growth, and GRmax is the maximum effect on
growth rate from the highest tested drug concentration. GRAOC is the area over the GR curve that
represents the variation in drug efficacy and potency, and GRinf indicates the maximal effect on the
growth rate caused by the drug at an infinite dose [29,39]. All the parameters were calculated following
the provided GR calculator instructions, using cell lines and treatment types as grouping variables for
analysis. Briefly, four replicates for each assay condition (cell line, drug, and drug concentration) were
averaged and the relative cell count was determined as y(c)/yctrl, where y(c) and yctrl are the number
of viable cells in the presence of the drug at concentration c or at the control DMSO concentration,
respectively. All the required conditions (cell line, drug, concentration, cell count at concentration c,
initial cell count without drug treatment, and control cell count with DMSO treatment) were loaded
into the online GR calculator tool, where the above-mentioned drug response metrics were calculated
and analyzed.

4.16. Correlation of Drug Metrics

To evaluate the association between different variables, correlation tests were performed using the
ggpubr R package. The Pearson correlation (r) was assessed in order to measure the linear dependence
between two variables after confirmation of a normal distribution of the data. Correlation coefficients
were compiled as a variable ranging between −1 (red) and 1 (blue), indicating a strong negative and
positive correlation, respectively. A dot plot visualization of the Pearson correlation and p value
significance was also used to visually assess differences between HuP3D metrics when compared to
2D IC50, other 3D model IC50, and clinical Css values. A violin plot was performed to evaluate the
distribution of the data relative to the metric and experiment type from a distribution standpoint.
Finally, a correlogram with a significance level indicating the most correlated variables in HuP3D
metrics was performed using the R corrplot package.

4.17. Proliferation and Drug Screening Analysis by Flow Cytometry of Primary BCa Cells

Fresh or frozen small organoids and single cells (5 × 104 cells/scaffold) obtained from BCa patient
biopsies were incorporated in HuP3D cultures. These cultures were grown and analyzed at days
0.5 (γ0), 3, and 7. Three breast cancer patients with a known clinical outcome and treated with the same
chemotherapeutic regimen were identified at the Sanford Biobank. Patient clinical follow-up was greater
than two years and their response was categorized as resistance or response to treatment. Single cells
were obtained from the frozen BCa biopsies as previously described. Single cells (5 × 104 cells/scaffold)
obtained from the BCa patient biopsies were incorporated in HuP3D cultures. These cultures were
grown and treated with a DMSO control (γCtrl) and Arimidex concentrations of 15 µM (1/3 Css) and
45 µM (Css). Treatments were refreshed at day 4, and BCa cells were retrieved from the different
cultures at day 7. On each day of analysis, HuP3D cultures were enzymatically digested and isolated
cells were stained with FITC conjugated anti-CD45 (304038, Biolegend, San Diego, CA, USA), BV605
conjugated anti-CD44 (103047, Biolegend, San Diego, CA, USA), and PECy7 conjugated anti-EpCAM
CD326 (324222, Biolegend, San Diego, CA, USA). Samples were prepared in PBS with 1% BSA (w/v%,
Sigma-Aldrich, Saint Louis, MO, USA) for flow cytometry by adding counting beads (424902, Biolegend)
in addition to Live/Dead Blue Cell Stain (L34962, Thermo Fisher Scientific, Waltham, MA, USA) for
viability to each sample. BCa cells were identified by gating live cells as CD45-/CD44+/EpCAM+ cells
on the BD FACS LSRFortessa SORP (BD Biosciences). A minimum of 5 × 103 events was acquired per
sample, and FACSDiva v.6.1.2 software was used to collect data. BCa cell counts were acquired and
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data was analyzed using FlowJo v10 (BD Lifesciences, Ashland, OR, USA). Data was normalized to
a predetermined number of counting beads, and the proliferation of each condition (fold of γ0) and
survival (% of control) was calculated and compared.

4.18. Statistical Analysis of Data

Experiments were completed with replicates in triplicate (technical replicates) and repeated at
least three times (biological replicates), unless noted otherwise in the figure legends. Results have
been presented as a mean value ± a standard deviation value. Statistical significance was analyzed
using Student’s t-test, one-way ANOVA, or two-way ANOVA; a p value less than 0.05 was considered
significant. An interquartile range (IQR) was used to remove outliers.

5. Conclusions

Human plasma-derived 3D culture (HuP3D) is a physiological, patient-derived, tumor-like 3D
culture method that supports the efficient growth and expansion of BCa cell lines and primary breast
cancer tumors, as well as allowing for the screening of cancer drug responses in BCa cell lines and
primary BCa tumors. A significant and strong correlation with the clinical effective concentration in
patients was found for eight out of ten of the HuP3D metrics, revealing HuP3D cultures as a feasible
and efficacious technique to predict clinically effective therapies better than current preclinical models.

6. Patents

Pilar de la Puente, Somshuvra Bhattacharya, and Kristin Calar have a provisional patent application
on the method described in this manuscript.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/7/1722/s1,
Figure S1: (a) Cell proliferation data of each of the independent BCa cell lines. (b) Quantification of confocal
microscopy images. Quantified number of MDA-MB-231 cells detected growing within HuP3D cultures after 3
and 7 days and representative confocal images reflecting the selection pane used via binary editor (DiO tagged
green cancer cells are highlighted red when selected for counting considerations). (c) Quantified number of
MDA-MB-231 cell clusters only in scanned z-stack within HuP3D cultures after 3 and 7 days and representative
confocal images reflecting the selection pane used via binary editor for counting MDA-MB-231 cell clusters (clusters
of DiO tagged green cancer cells are highlighted red when selected for counting considerations), (*) p < 0.05;
Figure S2: Micrographs of the 5 BCa cell lines and primary cells (single cells and organoids) growing in HuP3D
cultures at day 3. Scale Bar = 100 µm; Figure S3: HuP3D high-throughput drug screening. (a) BCa cell lines
were previously labeled with DiD and incorporated in HuP3D cultures. After matrix stabilization, cells were
treated with a DMSO control (γCtrl) and increasing concentrations 0.1 nM–300 µM of seven standard-of-care
chemotherapeutic drugs. Media was refreshed at day 4, and HuP3D cultures were enzymatically digested to be
analyzed using flow cytometry at day 0 (γ0) and day 7. Data was analyzed utilizing the GR calculator to determine
10 drug response metrics. (b) Cytotoxic and cytostatic effects of HuP3D drug treatments depicting the HuP3D
culture drug metrics from the relative cell count curve including the half maximum inhibitory concentration (IC50),
maximal measured efficacy (Emax), area under the curve (AUC), half maximal response concentration (EC50),
and the effect of the drug concentration at infinite concentration (Einf), as well as from the GR curve including
the half maximum growth rate inhibition concentration (GR50), the maximum effect of the drug at the highest
tested concentration (GRmax), area over the curve (GRAOC), the half maximal growth rate inhibition response
concentration (GEC50), and the effect of the drug at infinite concentration (Einf); Figure S4: Complete custom
cytokine array image; Figure S5: Complete scanned gel for western blot shown in Figure 3d; Table S1: HuP3D
culture drug metrics from four independent assays, average and standard deviation, and references from 2D
models, other 3D models, and Css clinical effective drug concentrations.
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