Advances in Biomedical Instrumentation: Diagnosis, Therapy, and Rehabilitation (Featuring Selected Contributions Presented at the BEI-2023 Conference)

A special issue of Bioengineering (ISSN 2306-5354). This special issue belongs to the section "Biofabrication and Biomanufacturing".

Deadline for manuscript submissions: closed (15 April 2024) | Viewed by 2608

Special Issue Editors


E-Mail Website1 Website2
Guest Editor
Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
Interests: biomolecular engineering; biochip implant biocompatibility; in vivo biosensors; cell-based sensing; electronic nose; brain tumor biochip; bioelectronic devices and bioelectrochemistry
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Innovation Engineering (DII), University of Salento, Via Monteroni, 73100 Lecce, Italy
Interests: fault detection; sensor technologies; measurement techniques; monitoring and measurement systems; testing and characterization components; systems and monitoring equipment
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Department of Chemistry, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
2. Materials Science Institute, Faraday Building, Lancaster University, Lancaster LA1 4YB, UK
Interests: polymer synthesis; supramolecular materials; biomaterials; stimuli-responsive materials; drug delivery; tissue engineering; sustainability
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is dedicated to recent developments and advancements in biomedical engineering instrumentation.

The main topics include the instrumentation used in biofabrication and biomanufacturing; advanced biomaterials; biochemical, cellular, molecular and tissue engineering; health monitoring and wearable systems; rehabilitation engineering and clinical engineering; biomedical imaging, image processing and visualization; biosensor technology, bio-signal processing and analysis for diagnostic purposes; bioelectrical and neural engineering; and AI biomedical devices.

Sincerely,

Prof. Dr. Anthony Guiseppi-Elie
Dr. Andrea Cataldo
Dr. John G. Hardy
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Bioengineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3381 KiB  
Article
Adherence-Promoting Design Features in Pediatric Neurostimulators for ADHD Patients
by William Delatte, Allyson Camp, Richard B. Kreider and Anthony Guiseppi-Elie
Bioengineering 2024, 11(5), 502; https://doi.org/10.3390/bioengineering11050502 - 17 May 2024
Viewed by 396
Abstract
The emergence of remote health monitoring and increased at-home care emphasizes the importance of patient adherence outside the clinical setting. This is particularly pertinent in the treatment of Attention Deficit Hyperactivity Disorder (ADHD) in pediatric patients, as the population inherently has difficulty remembering [...] Read more.
The emergence of remote health monitoring and increased at-home care emphasizes the importance of patient adherence outside the clinical setting. This is particularly pertinent in the treatment of Attention Deficit Hyperactivity Disorder (ADHD) in pediatric patients, as the population inherently has difficulty remembering and initiating treatment tasks. Neurostimulation is an emerging treatment modality for pediatric ADHD and requires strict adherence to a treatment regimen to be followed in an at-home setting. Thus, to achieve the desired therapeutic effect, careful attention must be paid to design features that can passively promote and effectively monitor therapeutic adherence. This work describes instrumentation designed to support a clinical trial protocol that tests whether choice of color, or color itself, can statistically significantly increase adherence rates in pediatric ADHD patients in an extraclinical environment. This is made possible through the development and application of an internet-of-things approach in a remote adherence monitoring technology that can be implemented in forthcoming neurostimulation devices for pediatric patient use. This instrumentation requires minimal input from the user, is durable and resistant to physical damage, and provides accurate adherence data to parents and physicians, increasing assurance that neurostimulation devices are effective for at-home care. Full article
Show Figures

Figure 1

16 pages, 947 KiB  
Article
A Novel Metric for Alzheimer’s Disease Detection Based on Brain Complexity Analysis via Multiscale Fuzzy Entropy
by Andrea Cataldo, Sabatina Criscuolo, Egidio De Benedetto, Antonio Masciullo, Marisa Pesola and Raissa Schiavoni
Bioengineering 2024, 11(4), 324; https://doi.org/10.3390/bioengineering11040324 - 27 Mar 2024
Viewed by 786
Abstract
Alzheimer’s disease (AD) is a neurodegenerative brain disorder that affects cognitive functioning and memory. Current diagnostic tools, including neuroimaging techniques and cognitive questionnaires, present limitations such as invasiveness, high costs, and subjectivity. In recent years, interest has grown in using electroencephalography (EEG) for [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative brain disorder that affects cognitive functioning and memory. Current diagnostic tools, including neuroimaging techniques and cognitive questionnaires, present limitations such as invasiveness, high costs, and subjectivity. In recent years, interest has grown in using electroencephalography (EEG) for AD detection due to its non-invasiveness, low cost, and high temporal resolution. In this regard, this work introduces a novel metric for AD detection by using multiscale fuzzy entropy (MFE) to assess brain complexity, offering clinicians an objective, cost-effective diagnostic tool to aid early intervention and patient care. To this purpose, brain entropy patterns in different frequency bands for 35 healthy subjects (HS) and 35 AD patients were investigated. Then, based on the resulting MFE values, a specific detection algorithm, able to assess brain complexity abnormalities that are typical of AD, was developed and further validated on 24 EEG test recordings. This MFE-based method achieved an accuracy of 83% in differentiating between HS and AD, with a diagnostic odds ratio of 25, and a Matthews correlation coefficient of 0.67, indicating its viability for AD diagnosis. Furthermore, the algorithm showed potential for identifying anomalies in brain complexity when tested on a subject with mild cognitive impairment (MCI), warranting further investigation in future research. Full article
Show Figures

Graphical abstract

16 pages, 2764 KiB  
Article
Design of a Multiparametric Perfusion Bioreactor System for Evaluating Sub-Normothermic Preservation of Rat Abdominal Wall Vascularized Composite Allografts
by Sara Salehi, Ernesto Lippert Lozano, Yichuan Zhang, Yinan Guo, Renee Liu, Kenny Tran, Franka Messner, Gerald Brandacher and Warren L. Grayson
Bioengineering 2024, 11(4), 307; https://doi.org/10.3390/bioengineering11040307 - 25 Mar 2024
Viewed by 724
Abstract
Static cold storage (SCS), the current clinical gold standard for organ preservation, provides surgeons with a limited window of time between procurement and transplantation. In vascularized composite allotransplantation (VCA), this time limitation prevents many viable allografts from being designated to the best-matched recipients. [...] Read more.
Static cold storage (SCS), the current clinical gold standard for organ preservation, provides surgeons with a limited window of time between procurement and transplantation. In vascularized composite allotransplantation (VCA), this time limitation prevents many viable allografts from being designated to the best-matched recipients. Machine perfusion (MP) systems hold significant promise for extending and improving organ preservation. Most of the prior MP systems for VCA have been built and tested for large animal models. However, small animal models are beneficial for high-throughput biomolecular investigations. This study describes the design and development of a multiparametric bioreactor with a circuit customized to perfuse rat abdominal wall VCAs. To demonstrate its concept and functionality, this bioreactor system was employed in a small-scale demonstrative study in which biomolecular metrics pertaining to graft viability were evaluated non-invasively and in real time. We additionally report a low incidence of cell death from ischemic necrosis as well as minimal interstitial edema in machine perfused grafts. After up to 12 h of continuous perfusion, grafts were shown to survive transplantation and reperfusion, successfully integrating with recipient tissues and vasculature. Our multiparametric bioreactor system for rat abdominal wall VCA provides an advanced framework to test novel techniques to enhance normothermic and sub-normothermic VCA preservations in small animal models. Full article
Show Figures

Figure 1

Back to TopTop