Advances in Biological Activities and Application of Plant Extracts

A special issue of Applied Sciences (ISSN 2076-3417). This special issue belongs to the section "Applied Biosciences and Bioengineering".

Deadline for manuscript submissions: 31 October 2024 | Viewed by 6795

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 4 Berdychowo St., 60-965 Poznań, Poland
Interests: LC-MS/MS; ITP; solid phase extraction; liquid–liquid extraction; non-ionic surfactant; selenium speciation; pharmaceutical residues
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue titled “Advances in Biological Activities and Application of Plant Extracts” focuses on the biological activity of plant extracts. From time immemorial, plant extracts and essential oils from plants have been used for therapeutic purposes. A number of phytochemicals—secondary metabolites such as polyphenols, carotenoids, polysaccharides, or volatile oils—are responsible for their medicinal properties. These bioactive phytochemicals from plants can limit or regulate the imbalance generated by reactive oxygen species, which can lead to inflammatory, neurodegenerative, cardiovascular, immune, and metabolic dysfunctions, or even to the appearance of tumors. In addition, the anti-inflammatory properties of certain plant extracts are exploited to fight pathogens, bacteria, fungi, and viruses.

Plant extracts are an important source of antioxidants and anti-inflammatory compounds and are always of scientific interest. Many studies are being conducted in order to identify their mechanism of action. Considering the above-mentioned worldwide circumstances, we would like to encourage leading scientists working on the topics of bioactive food, as well as studying biological activities of novel plant extracts, to submit original research or review papers. In particular, we welcome those that address any aspect of the use of novel bioactive compounds for food production and human nutrition. Papers on the study of medicinal plant bioactivity are also welcome.

Dr. Przemyslaw Lukasz Kowalczewski
Dr. Joanna Zembrzuska
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Applied Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biological activity
  • plant extracts
  • bioactive food
  • biological compounds
  • natural products
  • medicinal plants bioactivity

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

6 pages, 235 KiB  
Editorial
Advances in Biological Activities and Application of Plant Extracts
by Przemysław Łukasz Kowalczewski and Joanna Zembrzuska
Appl. Sci. 2023, 13(16), 9324; https://doi.org/10.3390/app13169324 - 17 Aug 2023
Cited by 1 | Viewed by 1432
Abstract
For centuries, plants have been part of human civilisation, serving as food, healing substances and treatments for various diseases [...] Full article
(This article belongs to the Special Issue Advances in Biological Activities and Application of Plant Extracts)

Research

Jump to: Editorial

12 pages, 1876 KiB  
Article
Antifungal Effects of Fermented Sophora flavescens and Eleutherococcus sessiliflorus Extract
by Ju Yeon Kim, Min Joo Chae, Yun Gon Son, Su Min Jo, Na Rae Kang, Seong Doo Kang, Kwang Dong Kim, Sang Won Lee and Jeong Yoon Kim
Appl. Sci. 2024, 14(10), 4074; https://doi.org/10.3390/app14104074 - 10 May 2024
Viewed by 328
Abstract
In this study, a microbial strain was isolated from humus soil to ferment Sophora flavescens and Eleutherococcus sessiliflorus extracts. The isolated microbial was identified as the Bacillus genus by 16S rRNA sequence analysis. The fermented plant extracts exhibited antifungal effects against four types [...] Read more.
In this study, a microbial strain was isolated from humus soil to ferment Sophora flavescens and Eleutherococcus sessiliflorus extracts. The isolated microbial was identified as the Bacillus genus by 16S rRNA sequence analysis. The fermented plant extracts exhibited antifungal effects against four types plant pathogen, P. carotorum, B. cinerea, C. fructicola Sau-3, and C. gloeosporioides, according to incubation time. In particular, the fermented plant extracts showed the most activity for Colletotrichum genus in inhibiting mycelium growth. Metabolite changes in fermented S. flavescens and E. sessiliflorus extracts were confirmed through LC-Q-TOF/MS. Flavonoid and peptide derivatives were improved in fermented S. flavescens and E. sessiliflorus extracts compared to their unfermented counterparts. This study suggested that isolated Bacillus microbial fermentation could be a valuable tool in improving the bioactivity of S. flavescens and E. sessiliflorus extracts, with the potential to form more environmentally friendly antifungal agents. Full article
(This article belongs to the Special Issue Advances in Biological Activities and Application of Plant Extracts)
Show Figures

Figure 1

15 pages, 1957 KiB  
Article
Phytochemical Profiles and Anti-Glioma Activity of Bearberry Arctostaphylos uva-ursi (L.) Spreng. Leaf Extracts
by Piotr Sugier, Joanna Jakubowicz-Gil, Adrian Zając, Danuta Sugier, Małgorzata Wójcik, Joanna Czarnecka, Rafał Krawczyk, Danuta Urban and Łukasz Sęczyk
Appl. Sci. 2024, 14(8), 3418; https://doi.org/10.3390/app14083418 - 18 Apr 2024
Viewed by 397
Abstract
The use of diversified raw materials and various extractant types is justified because the varied chemical composition of extracts obtained via extraction determines their biological activity. Therefore, the objective of this study was (i) to characterize the chemical profile of two types of [...] Read more.
The use of diversified raw materials and various extractant types is justified because the varied chemical composition of extracts obtained via extraction determines their biological activity. Therefore, the objective of this study was (i) to characterize the chemical profile of two types of bearberry extracts (70% ethanolic and water) and (ii) to investigate the biological activity of the analyzed extracts through an assessment of their possible proapoptotic effects on glioma cell lines. The HPLC-UV analysis of individual compounds was performed for the determination of the phytochemical profile of the bearberry extracts, and their total phenolic content (TPC) and total flavonoid content (TFC) were determined spectrophotometrically. The induction of apoptosis, autophagy, and necrosis in anaplastic astrocytoma MOGGCCM and human glioblastoma LN229 cell lines were investigated. The results indicated that the ethanolic (Et) and aqueous (Aq) extracts had different chemical profiles. The TPC in the Et was ca. 60% higher than in the Aq. Similarly, the TFC and methylarbutin (mARB) concentrations were significantly higher in the Et. On the other hand, the concentration of hydroquinone (HQ) was ca. 70% and that of corilagin (COR) was ca. 100% higher in the Aq. In turn, the presence of ursolic acid (UA) and oleanolic acid (OA) was confirmed solely in the Et. In contrast to Aq, Et demonstrated high proapoptotic activity. At the concentration of 2 µL/mL, the level of apoptosis varied between 14.7% and 26% in the case of the MOGGCCM cells and between 12.3% and 33.3% in the case of the LN229 cell line. The knowledge and information obtained in this study indicate a need for further research on the anticancer effect of the studied bearberry phytochemicals on the MOGGCCM and LN229 cell lines and for the elucidation of their molecular anticancer mechanisms. Full article
(This article belongs to the Special Issue Advances in Biological Activities and Application of Plant Extracts)
Show Figures

Figure 1

24 pages, 3808 KiB  
Article
Use of Silybum marianum Extract and Bio-Ferment for Biodegradable Cosmetic Formulations to Enhance Antioxidant Potential and Effect of the Type of Vehicle on the Percutaneous Absorption and Skin Retention of Silybin and Taxifolin
by Edyta Kucharska, Richard Sarpong, Anna Bobkowska, Joanna Ryglewicz, Anna Nowak, Łukasz Kucharski, Anna Muzykiewicz-Szymańska, Wiktoria Duchnik and Robert Pełech
Appl. Sci. 2024, 14(1), 169; https://doi.org/10.3390/app14010169 - 24 Dec 2023
Cited by 1 | Viewed by 1092
Abstract
In the present study, extract (E) and bio-ferment (B) were obtained from ground and defatted thistle seeds of Silybum marianum. Their antioxidant activity was assessed using the DPPH, ABTS, and FRAP techniques, while total polyphenols were measured by the Folin–Ciocalteu method. High antioxidant [...] Read more.
In the present study, extract (E) and bio-ferment (B) were obtained from ground and defatted thistle seeds of Silybum marianum. Their antioxidant activity was assessed using the DPPH, ABTS, and FRAP techniques, while total polyphenols were measured by the Folin–Ciocalteu method. High antioxidant activity was found in both the E (0.91 mmol Trolox/L ± 0.2) and B (1.19 mmol Trolox/L ± 0.2) using DPPH methods, so the obtained cosmetic raw materials were incorporated into hydrogel and organogel substrates to obtain cosmetic formulations with antioxidant activity. However, there is a scarcity of research providing information on the skin penetration of the main active components of S. marianum, which have an antioxidant effect. Therefore, we assessed in vitro the penetration through pig skin of the main components contained in the obtained B and E, such as silybin and taxifolin, which are part of the silymarin complex. We also used pure silymarin (S) for comparison. Among the tested preparations, H-S showed the utmost significant penetration of taxifolin, having a cumulative permeation of 87.739 ± 7.457 μg/cm2. Biodegradation tests of the prepared formulations were also performed, containing cosmetic raw materials and S. Studies of the effect of the cosmetic formulations on aerobic biodegradation showed a good level of degradation for the prepared formulations, some of which (O-B and O-S) were classified as easily degradable (OECD). Full article
(This article belongs to the Special Issue Advances in Biological Activities and Application of Plant Extracts)
Show Figures

Figure 1

14 pages, 598 KiB  
Article
Assessment and Comparison of Phytochemical Constituents and Biological Activities between Full Flowering and Late Flowering of Hypericum perforatum L.
by Diletta Piatti, Riccardo Marconi, Giovanni Caprioli, Simone Angeloni, Massimo Ricciutelli, Gokhan Zengin, Filippo Maggi, Luca Pagni and Gianni Sagratini
Appl. Sci. 2023, 13(24), 13304; https://doi.org/10.3390/app132413304 - 16 Dec 2023
Viewed by 710
Abstract
This study assessed the impact of full and late flowering stages on the polyphenols and enzyme inhibitory properties of Hypericum perforatum from Poland. Recognizing the significance of phenolic compounds in disease prevention and melatonin’s emerging protective role, we employed an UHPLC-MS/MS system to [...] Read more.
This study assessed the impact of full and late flowering stages on the polyphenols and enzyme inhibitory properties of Hypericum perforatum from Poland. Recognizing the significance of phenolic compounds in disease prevention and melatonin’s emerging protective role, we employed an UHPLC-MS/MS system to quantify 38 phenolic compounds, not typical of St. John’s wort, and to develop a new method for melatonin quantification. Afterward, the extracts were tested for their antioxidant capabilities (using phosphomolybdenum, DPPH, ABTS, FRAP, CUPRAC and ferrous chelating assays). Moreover, we investigated enzymes (acetylcholinesterase, butyrylcholinesterase and tyrosinase) involved in neurodegenerative disorders and (α-amylase and α-glucosidase) in diabetes. This study recognized the importance of phenolic compounds in disease prevention and explored the emerging protective role of melatonin, taking into account the floral ontogeny of the plant. Indeed, the full-flowering plant contained the greatest concentration of phenolic compounds (a total of 65,276.5 µg/g): hyperoside (18,726.59 µg/g), isoquercitrin (11,895.02 µg/g) and delphindin-3.5-diglucoside (10,619.51 µg/g), and showed the highest inhibitory enzyme activity. Moreover, only full-flowering St. John’s wort contained melatonin (40 ng/g). Our results offer additional perspectives on the chemical-biological characteristics of H. perforatum and scientific knowledge that testifies to the importance of considering plant growth conditions for the development of nutraceuticals. Full article
(This article belongs to the Special Issue Advances in Biological Activities and Application of Plant Extracts)
Show Figures

Figure 1

19 pages, 4700 KiB  
Article
Phytogenic Synthesis and Characterization of Silver Metallic/Bimetallic Nanoparticles Using Beta vulgaris L. Extract and Assessments of Their Potential Biological Activities
by Khaled M. Elattar, Abeer A. Ghoniem, Fatimah O. Al-Otibi, Mohammed S. El-Hersh, Yosra A. Helmy and WesamEldin I. A. Saber
Appl. Sci. 2023, 13(18), 10110; https://doi.org/10.3390/app131810110 - 8 Sep 2023
Cited by 6 | Viewed by 1206
Abstract
The synthesis of novel nanomedicines through eco-friendly protocols has been applied on a large scale with the prediction of discovering alternate therapies. The current work attained phytogenic synthesis of Ag-mNPs, AgSeO2-bmNPs, and Ag-TiO2-bmNPs through bio-reduction using an aqueous extract [...] Read more.
The synthesis of novel nanomedicines through eco-friendly protocols has been applied on a large scale with the prediction of discovering alternate therapies. The current work attained phytogenic synthesis of Ag-mNPs, AgSeO2-bmNPs, and Ag-TiO2-bmNPs through bio-reduction using an aqueous extract of Beta vulgaris (red beetroot). The phytochemical profile of the eco-friendly synthesized metallic/bimetallic nanoparticles was studied. The optical properties of nano-solutions were studied via UV-visible spectroscopy. The Fourier-transform infrared spectroscopy (FT-IR) spectral analyses revealed that stretching vibrations at wavenumbers 3303.81–3327.81 cm−1 attributed to phenolic hydroxyl groups documented shifts in the values in this range owing to proton dissociation through the bio-reduction of the metal ions. The surface morphology and the charge of the nanoparticles were investigated using a Transmission Electron Microscope (TEM) and zeta potential analyses. The prepared nano-solutions showed lower antioxidant activity (1,1-Diphenyl-2-picrylhydrazyl (DPPH) and phosphomolybdate assays) than the plant extract. These results together with phytochemical analyses support the participation of the reactive species (phenolic contents) in the bio-reduction of the metal ions in the solutions through the formation of metallic/bimetallic nanoparticles. Ag-mNPs, AgSeO2-bmNPs, and Ag-TiO2-bmNPs showed antibacterial potentiality. AgSeO2-bmNPs were superior with inhibitory zone diameters of 34.7, 37.7, 11.7, and 32.7 mm against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, and Salmonella enterica, respectively. Applying the Methylthiazole Tetrazolium (MTT) assay, the Ag-TiO2 bmNPs revealed potent cytotoxicity against the HePG2 tumor cell line (IC50 = 18.18 ± 1.5 µg/mL), while Ag-SeO2 bmNPs revealed the most potent cytotoxicity against the MCF-7 cell line (IC50 = 17.92 ± 1.4 µg/mL). Full article
(This article belongs to the Special Issue Advances in Biological Activities and Application of Plant Extracts)
Show Figures

Figure 1

20 pages, 6570 KiB  
Article
Culturable Diversity and Biological Properties of Bacterial Endophytes Associated with the Medicinal Plants of Vernonia anthelmintica (L.) Willd
by Niu Litao, Nigora Rustamova, Paiziliya Paerhati, Hui-Xia Ning and Abulimiti Yili
Appl. Sci. 2023, 13(17), 9797; https://doi.org/10.3390/app13179797 - 30 Aug 2023
Viewed by 998
Abstract
As one of the important traditional medicinal plants listed in the Chinese pharmacopoeia, Vernonia anthelmintica (L.) Willd has been shown to possess various biological activities. In this study, we characterized culturable endophytic bacteria associated with the medicinal plant V. anthelmintica collected from Hotan [...] Read more.
As one of the important traditional medicinal plants listed in the Chinese pharmacopoeia, Vernonia anthelmintica (L.) Willd has been shown to possess various biological activities. In this study, we characterized culturable endophytic bacteria associated with the medicinal plant V. anthelmintica collected from Hotan within the Xinjiang autonomous region of China. Bacterial endophytes were identified via 16S rRNA gene sequence analysis and compared to similar sequences from the GenBank. Isolated strains exhibited 99.08–100% similarity to Bacillus haynesii XJB-5, Bacillus proteolyticus XJB-16, Bacillus halotolerans XJB-35, Bacillus safensis XJB-71, Pseudomonas punonensis XJB-7, Lysinibacillus fusiformis XJB-17, Streptococcus lutetiensis XJB-66, Leclercia adecarboxylata XJB-12, Paenibacillus alvei XJB-14, and Pantoea agglomerans XJB-62. The ethyl acetate extracts of the bacterial endophytes demonstrated various pharmacological properties, such as antimicrobial, cytotoxic, antidiabetic, and antioxidant activity, according to a melanin content assay and have shown tyrosinase activity in murine B16 cells. A crude extract of B. halotolerans XJB-35 displayed more powerful biological activities than other bacterial endophytes; therefore, this strain was studied further in order to select the optimized parameters for enhancing the synthesis of bioactive compounds. The optimal culture medium was found to be nutrient broth (NB) medium, using peptone as its carbon source and yeast extract as its nitrogen source. A 24 h incubation time produced the optimal conditions for the maximum growth of B. halotolerans XJB-35 and the production of bioactive compounds. Moreover, we investigated the volatile chemical component of the dichloromethane fraction using GC-MS analysis. Our findings provide valuable information regarding the synthesize of bioactive natural products by B. halotolerans XJB-35 for use by the medicinal and pharmaceutical industries. Full article
(This article belongs to the Special Issue Advances in Biological Activities and Application of Plant Extracts)
Show Figures

Figure 1

Back to TopTop