Microscopic Structure Research in Animals

A special issue of Animals (ISSN 2076-2615). This special issue belongs to the section "Animal Physiology".

Deadline for manuscript submissions: closed (31 December 2022) | Viewed by 27395

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50375 Wroclaw, Poland
Interests: veterinary anatomy; eye; histology; histochemistry; accessory organs of the eye
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50375 Wroclaw, Poland
Interests: veterinary anatomy; veterinary physiology; digestive system; eye; accessory organs of the eye; histology; histochemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Detailed anatomical knowledge of domestic and wild animals has a fundamental significance, especially for veterinarians and biologists. Furthermore, anatomy is the base for evolutionary, phylogenetic, or taxonomic studies. The presence of structural differences in the examined organs of selected animals may be understood within an ecological context and/or may be associated with different habitat-specific environmental conditions.

This Special Issue is focused on “Microscopic Structure Research in Animals”, and therefore welcomes detailed microscopic research of the selected organs of different species.

You are invited to submit of high-quality review articles and original research covering a broad range of veterinary anatomy, comparative anatomy, functional anatomy, and embryology of domestic and wild animals. The use of histological, histochemical, and immunohistochemical techniques as well as scanning electron microscopy (SEM) and/or transmission electron microscopy (TEM) will be of major interest.

Prof. Joanna Klećkowska-Nawrot
Dr. Karolina Goździewska-Harłajczuk
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Animals is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • anatomy
  • histology
  • histochemistry
  • light microscopy
  • ultrastructure
  • comparative morphology
  • embryology
  • domestic and wild animals

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

13 pages, 2053 KiB  
Article
Immunodetection of P2X2 Receptor in Enteric Nervous System Neurons of the Small Intestine of Pigs
by Sylwia Mozel and Marcin B. Arciszewski
Animals 2022, 12(24), 3576; https://doi.org/10.3390/ani12243576 - 17 Dec 2022
Viewed by 1353
Abstract
Extracellular adenosine 5′-triphosphate (ATP) is one of the best-known and frequently studied neurotransmitters. Its broad spectrum of biological activity is conditioned by the activation of purinergic receptors, including the P2X2 receptor. The P2X2 receptor is present in the central and peripheral nervous system [...] Read more.
Extracellular adenosine 5′-triphosphate (ATP) is one of the best-known and frequently studied neurotransmitters. Its broad spectrum of biological activity is conditioned by the activation of purinergic receptors, including the P2X2 receptor. The P2X2 receptor is present in the central and peripheral nervous system of many species, including laboratory animals, domestic animals, and primates. However, the distribution of the P2X2 receptor in the nervous system of the domestic pig, a species increasingly used as an experimental model, is as yet unknown. Therefore, this study aimed to determine the presence of the P2X2 receptor in the neurons of the enteric nervous system (ENS) of the pig small intestine (duodenum, jejunum, and ileum) by the immunofluorescence method. In addition, the chemical code of P2X2-immunoreactive (IR) ENS neurons of the porcine small intestine was analysed by determining the coexistence of selected neuropeptides, i.e., vasoactive intestinal polypeptide (VIP), substance P (sP), and galanin. P2X2-IR neurons were present in the myenteric plexus (MP), outer submucosal plexus (OSP), and inner submucosal plexus (ISP) of all sections of the small intestine (duodenum, jejunum, and ileum). From 44.78 ± 2.24% (duodenum) to 63.74 ± 2.67% (ileum) of MP neurons were P2X2-IR. The corresponding ranges in the OSP ranged from 44.84 ± 1.43% (in the duodenum) to 53.53 ± 1.21% (in the jejunum), and in the ISP, from 53.10 ± 0.97% (duodenum) to 60.57 ± 2.24% (ileum). Immunofluorescence staining revealed the presence of P2X2-IR/galanin-IR and P2X2-IR/VIP-IR neurons in the MP, OSP, and ISP of the sections of the small intestine. The presence of sP was not detected in the P2X2-IR neurons of any ganglia tested in the ENS. Our results indicate for the first time that the P2X2 receptor is present in the MP, ISP, and OSP neurons of all small intestinal segments in pigs, which may suggest that its activation influences the action of the small intestine. Moreover, there is a likely functional interaction between P2X2 receptors and galanin or VIP, but not sP, in the ENS of the porcine small intestine. Full article
(This article belongs to the Special Issue Microscopic Structure Research in Animals)
Show Figures

Figure 1

16 pages, 1986 KiB  
Article
Comparative Histology of the Cornea and Palisades of Vogt in the Different Wild Ruminants (Bovidae, Camelidae, Cervidae, Giraffidae, Tragulidae)
by Joanna Klećkowska-Nawrot, Karolina Goździewska-Harłajczuk and Karolina Barszcz
Animals 2022, 12(22), 3188; https://doi.org/10.3390/ani12223188 - 17 Nov 2022
Cited by 1 | Viewed by 1622
Abstract
In the study, we data concerning the histological and morphometrical examination of the cornea and palisades of Vogt in the different species of ruminants from the families Bovidae, Camelidae, Cervidae, Giraffidae and Tragulidae, coming from the Warsaw Zoological Garden, the Wroclaw Zoological Garden [...] Read more.
In the study, we data concerning the histological and morphometrical examination of the cornea and palisades of Vogt in the different species of ruminants from the families Bovidae, Camelidae, Cervidae, Giraffidae and Tragulidae, coming from the Warsaw Zoological Garden, the Wroclaw Zoological Garden and the Division of Animal Anatomy. The following ruminant species were investigated: common wildebeest, Kirk’s dik-dik, Natal red duiker, scimitar oryx, sitatunga, Philippine spotted deer, Père David’s deer, moose, reindeer, reticulated giraffe, okapi, Balabac mouse-deer and alpaca. The cornea of ruminant species such as the common wildebeest, Kirk’s dik-dik, Natal red duiker, scimitar oryx, reindeer and Balabac mouse-deer consisted of four layers (not found in the Bowman’s layer): the anterior corneal epithelium, the proper substance of the cornea, the posterior limiting membrane (Descemet’s membrane) and the posterior corneal epithelium (endothelium). The anterior corneal epithelium was composed of a multilayer keratinizing squamous epithelium, which was characterized in the studied ruminants with a variable number of cell layers but also with a different thickness both in the central epithelium part and in the peripheral part. Moreover, the proper substance of cornea was thinnest in Balabac mouse-deer, Kirk’s dik-dik, Natal red duiker, scimitar oryx, Philippine spotted deer, alpaca, reindeer and sitatunga and was thickest in the reticulated giraffe. The thickest Descemet’s membrane was observed in the Père David’s deer. The corneal limbus is characterized by a large number of pigment cell clusters in Kirk’s dik-dik, scimitar oryx, moose, Balabac mouse-deer and alpaca. In the common wildebeest, Père David’s deer, moose, reticulated giraffe, okapi and alpaca, the palisades of Vogt were marked in the form of a crypt-like structure. The corneal limbus epithelium in the examined ruminants was characterized by a variable number of cell layers but also a variable number of melanocytes located in different layers of this epithelium. The detailed knowledge of the corneal structure of domestic and wild animals can contribute to the even better development of methods for treating eye diseases in veterinary medicine. Full article
(This article belongs to the Special Issue Microscopic Structure Research in Animals)
Show Figures

Figure 1

19 pages, 4958 KiB  
Article
Comparative Histology of C Thyrocytes in Four Domestic Animal Species: Dog, Pig, Horse, and Cattle
by Justyna Sokołowska, Anna Cywińska and Martyna Puchalska
Animals 2022, 12(10), 1324; https://doi.org/10.3390/ani12101324 - 23 May 2022
Cited by 1 | Viewed by 2177
Abstract
The number, morphology, and distribution of C thyrocytes within the thyroid gland vary among species; however, studies in domestic animals are limited. In this study we compared the morphology, distribution pattern, and percentage of C thyrocytes in four domestic species: dogs, pigs, horses, [...] Read more.
The number, morphology, and distribution of C thyrocytes within the thyroid gland vary among species; however, studies in domestic animals are limited. In this study we compared the morphology, distribution pattern, and percentage of C thyrocytes in four domestic species: dogs, pigs, horses, and cattle. Eighty thyroid glands, 20 per species, were examined. C thyrocytes were visualized immunohistochemically with anti-calcitonin rabbit polyclonal antibody alone and combined with the periodic acid Schiff method to simultaneously visualize C thyrocytes with the basement membranes of thyroid follicles. C thyrocyte morphology varied considerably between species, from oval- (dogs) and spindle-shaped (pigs) to polymorphic (cattle and horses). Bovine C thyrocytes demonstrated cytoplasmic protrusion. C thyrocytes were located intrafolliculary (all species), epifollicularly (dogs, horses, cattle), or interfolicularly (cattle). Most porcine and bovine C thyrocytes existed individually whereas canine C thyrocytes usually formed clusters. In horses, they tended to form groups of various shapes and sizes or even rims encompassing whole follicles. In all species, the number of C thyrocyte profiles increased from the periphery to the central area of the thyroid lobe. The mean total fraction of C thyrocytes in the superficial, intermediate, and central areas were as follows: 2.55%, 8.43%, and 12.48% in dogs; 3.81%, 7.66%, and 10.79% in pigs; 1.55%, 7.44%, and 8.87% in horses; and 2.62%, 10.75%, and 12.96% in cattle. No statistical differences in the total number of C thyrocyte profiles were observed among species (8.87% in dogs, 8.58% in cattle, 7.98% in pigs, and 5.83% in horses). Our results indicated that the studied species displayed their own morphological characteristics and distribution pattern of C thyrocytes; however, total numbers of C thyrocyte profiles and their localization within the thyroid lobe are comparable. Full article
(This article belongs to the Special Issue Microscopic Structure Research in Animals)
Show Figures

Figure 1

16 pages, 42194 KiB  
Article
Assessment of Selected Morphological, Physical and Chemical Parameters of the Teeth of the Offspring of Female Rats Exposed to 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), Taking into Account the Protective Role of Selected Antioxidants—Preliminary Study
by Maciej Dobrzyński, Anna Nikodem, Joanna Klećkowska-Nawrot, Karolina Goździewska-Harłajczuk, Maciej Janeczek, Marzena Styczyńska and Piotr Kuropka
Animals 2022, 12(4), 484; https://doi.org/10.3390/ani12040484 - 16 Feb 2022
Viewed by 2251
Abstract
The studies conducted so far indicate a negative effect of dioxins on the structure of the alveolar bone and teeth, especially in the developmental period in rats. The research aimed to analyze the indirect effect of dioxins contained in the body of female [...] Read more.
The studies conducted so far indicate a negative effect of dioxins on the structure of the alveolar bone and teeth, especially in the developmental period in rats. The research aimed to analyze the indirect effect of dioxins contained in the body of female rats on the structure of the dental organ in their offspring in the neonatal period and to determine the possibility of reducing potential dioxin disorders of the structure of hard tissues in the offspring of intoxicated mothers by simultaneous administration of vitamin E or acetylsalicylic acid (ASA). Another goal of the research was to determine the level of magnesium, calcium and phosphorus contained in bone tissue as indicators of the mineralization process of hard tissues in rats, in the case of using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and acetylsalicylic acid or α-tocopherol. The experiment was carried out on eight female rats of the Buffalo strain divided into four groups. From the offspring of eight females, the mandibles were removed from the mandibular joints, and then, after the removal of soft tissues, they were prepared for individual tests. Selected morphological, chemical and physical parameters of the teeth of the offspring of female rats from the experimental groups were analyzed. The analysis showed the effect of vitamin E and ASA on the content of Mg, Ca and P. In combination with TCDD, vitamin E and ASA, they positively inhibit the inflammatory process, preventing the leaching of Ca and Mg from the bones. ASA counteracted this phenomenon much more effectively than vitamin E. Detailed analysis of the tooth morphology showed that the molars’ crowns exhibit shape disturbances under the influence of TCDD. Individual nodules in teeth T1, T2, T3 did not fuse, and the roots showed signs of hypertrophy. The study confirmed the negative effect of TCDD on tooth development. Teeth arising early in development are the most sensitive to the disorders, while the later ones are less exposed to the toxic effects of TCDD transmitted by the mother. Full article
(This article belongs to the Special Issue Microscopic Structure Research in Animals)
Show Figures

Figure 1

13 pages, 1951 KiB  
Article
The Improvement of the Adaptation Process of Tocopherol and Acetylsalicylic Acid in Offspring of Mothers Exposed to TCDD
by Maciej Dobrzyński, Jan P. Madej, Anna Leśków, Małgorzata Tarnowska, Jacek Majda, Monika Szopa, Andrzej Gamian and Piotr Kuropka
Animals 2021, 11(12), 3430; https://doi.org/10.3390/ani11123430 - 01 Dec 2021
Cited by 1 | Viewed by 1656
Abstract
Dioxins are chemical compounds that may cause an inflammatory reaction. During dioxin-induced inflammation, generated reactive oxygen species lead to morphological changes in various tissues and in biochemical parameters. The aim of this study was to demonstrate the changes in the livers of rats [...] Read more.
Dioxins are chemical compounds that may cause an inflammatory reaction. During dioxin-induced inflammation, generated reactive oxygen species lead to morphological changes in various tissues and in biochemical parameters. The aim of this study was to demonstrate the changes in the livers of rats whose mothers were exposed to dioxins and the protective role of α-tocopherol and acetylsalicylic acid in liver inflammation. The study material consisted of Buffalo rats who were the offspring of females treated with dioxin, dioxin + α-tocopherol, or dioxin + acetylsalicylic acid. Livers and blood samples were taken from the rats’ offspring, and then histopathological and biochemical analyses were performed. The histopathological analysis showed that the changes observed in the livers of neonates were the result of the dioxins derived from their mother. The biochemical analysis showed that the morphological changes in the liver affected its function, which manifested in a higher total protein concentration in the dioxin-treated group, and that the creatinine level in this group was significantly higher than that in the other groups. This effect was reduced by the protective role of α-tocopherol and acetylsalicylic acid. Based on these results, we came to the conclusion that dioxins significantly affect the structure of the liver, which negatively affects its function, mainly in the scope of the metabolism of plasma proteins and hepatic enzymes. Full article
(This article belongs to the Special Issue Microscopic Structure Research in Animals)
Show Figures

Figure 1

12 pages, 1756 KiB  
Article
Histological Study of Suprabranchial Chamber Membranes in Anabantoidei and Clariidae Fishes
by Dobrochna Adamek-Urbańska, Ewelina Błażewicz, Magdalena Sobień, Robert Kasprzak and Maciej Kamaszewski
Animals 2021, 11(4), 1158; https://doi.org/10.3390/ani11041158 - 17 Apr 2021
Cited by 5 | Viewed by 3009
Abstract
Accessory respiratory organs (AROs) are a group of anatomical structures found in fish, which support the gills and skin in the process of oxygen uptake. AROs are found in many fish taxa and differ significantly, but in the suborder Anabantoidei, which has a [...] Read more.
Accessory respiratory organs (AROs) are a group of anatomical structures found in fish, which support the gills and skin in the process of oxygen uptake. AROs are found in many fish taxa and differ significantly, but in the suborder Anabantoidei, which has a labyrinth organ (LO), and the family Clariidae, which has a dendritic organ (DO), these structures are found in the suprabranchial cavity (SBC). In this study, the SBC walls, AROs, and gills were studied in anabantoid (Betta splendens, Ctenopoma acutirostre, Helostoma temminckii) and clariid (Clarias angolensis, Clarias batrachus) fishes. The histological structure of the investigated organs was partially similar, especially in relation to their connective tissue core; however, there were noticeable differences in the epithelial layer. There were no significant species-specific differences in the structure of the AROs within the two taxa, but the SBC walls had diversified structures, depending on the observed location. The observed differences between species suggest that the remarkable physiological and morphological plasticity of the five investigated species can be associated with structural variety within their AROs. Furthermore, based on the observed histology of the SBC walls, it is reasonable to conclude that this structure participates in the process of gas exchange, not only in clariid fish but also in anabantoids. Full article
(This article belongs to the Special Issue Microscopic Structure Research in Animals)
Show Figures

Figure 1

18 pages, 9211 KiB  
Article
Microstructure of the Surface of the Tongue and Histochemical Study of the Lingual Glands of the Lowland Tapir (Tapirus terrestris Linnaeus, 1758) (Perissodactyla: Tapiridae)
by Karolina Goździewska-Harłajczuk, Pavla Hamouzová, Joanna Klećkowska-Nawrot, Karolina Barszcz and Petr Čížek
Animals 2020, 10(12), 2297; https://doi.org/10.3390/ani10122297 - 04 Dec 2020
Cited by 3 | Viewed by 2694
Abstract
Although the anatomy of the gastrointestinal tract has been characterized in the lowland tapir (Tapirus terrestris), the exact anatomy of its tongue has not been studied. Samples of the lingual papillae and lingual glands were collected from the tongue of an [...] Read more.
Although the anatomy of the gastrointestinal tract has been characterized in the lowland tapir (Tapirus terrestris), the exact anatomy of its tongue has not been studied. Samples of the lingual papillae and lingual glands were collected from the tongue of an adult female lowland tapir. The microscopic analysis of the structure of the lingual papillae and the histochemical analysis of the secretion of the lingual glands were analyzed. The tongue of the tapir is divided into the apex, body with a distinct lingual prominence, and the root. Its ventral surface is smooth. The most numerous of the mechanical papillae were the filiform papillae, while numerous conical papillae with a sharp apex or more rounded papillae were present in the root of the tongue. There were also nine vallate papillae and pair of foliate papillae. The foliate papillae contained several folds parted by 12–14 grooves. The mucous secretion produced by the lingual glands was more obvious than the serous secretion. The features of the dorsal surface of the tongue as well as the shape and number of the lingual papillae on the surface of the tongue of the examined female tapir differ compared to Equidae or Rhinocerotidae, the other two representatives of Perissodactyla. However, further study is necessary for the synapomorpy of the tapir’s tongue. Full article
(This article belongs to the Special Issue Microscopic Structure Research in Animals)
Show Figures

Figure 1

Review

Jump to: Research, Other

8 pages, 636 KiB  
Review
Minireview: Peripheral Nesfatin-1 in Regulation of the Gut Activity—15 Years since the Discovery
by Katarzyna Kras, Siemowit Muszyński, Ewa Tomaszewska and Marcin B. Arciszewski
Animals 2022, 12(1), 101; https://doi.org/10.3390/ani12010101 - 01 Jan 2022
Cited by 6 | Viewed by 1804
Abstract
Nesfatin-1, discovered in 2006, is an anorexigenic molecule derived from the precursor protein NEFA/nucleobindin2. It is generally postulated that this molecule acts through a specific G protein-coupled receptor, as yet unidentified. Research conducted over the last 15 years has revealed both central and [...] Read more.
Nesfatin-1, discovered in 2006, is an anorexigenic molecule derived from the precursor protein NEFA/nucleobindin2. It is generally postulated that this molecule acts through a specific G protein-coupled receptor, as yet unidentified. Research conducted over the last 15 years has revealed both central and peripheral actions of nesfatin-1. Given its major central role, studies determining its inhibitory effect on food intake seem to be of major scientific interest. However, in recent years a number of experiments have found that peripheral organs, including those of the gastrointestinal tract (GIT), may also be a source (possibly even the predominant source) of nesfatin-1. This mini-review aimed to summarize the current state of knowledge regarding the expression and immunoreactivity of nesfatin-1 and its possible involvement (both physiological and pathological) in the mammalian GIT. Research thus far has shown very promising abilities of nesfatin-1 to restore the balance between pro-oxidants and antioxidants, to interplay with the gut microbiota, and to alter the structure of the intestinal barrier. This necessitates more extensive research on the peripheral actions of this molecule. More in-depth knowledge of such mechanisms (especially those leading to anti-inflammatory and anti-apoptotic effects) is important for a better understanding of the involvement of nefatin-1 in GIT pathophysiological conditions and/or for future therapeutic approaches. Full article
(This article belongs to the Special Issue Microscopic Structure Research in Animals)
Show Figures

Figure 1

21 pages, 10810 KiB  
Review
Field-Emission Scanning Electron Microscope as a Tool for Large-Area and Large-Volume Ultrastructural Studies
by Bogdan Lewczuk and Natalia Szyryńska
Animals 2021, 11(12), 3390; https://doi.org/10.3390/ani11123390 - 27 Nov 2021
Cited by 9 | Viewed by 4640
Abstract
The development of field-emission scanning electron microscopes for high-resolution imaging at very low acceleration voltages and equipped with highly sensitive detectors of backscattered electrons (BSE) has enabled transmission electron microscopy (TEM)-like imaging of the cut surfaces of tissue blocks, which are impermeable to [...] Read more.
The development of field-emission scanning electron microscopes for high-resolution imaging at very low acceleration voltages and equipped with highly sensitive detectors of backscattered electrons (BSE) has enabled transmission electron microscopy (TEM)-like imaging of the cut surfaces of tissue blocks, which are impermeable to the electron beam, or tissue sections mounted on the solid substrates. This has resulted in the development of methods that simplify and accelerate ultrastructural studies of large areas and volumes of biological samples. This article provides an overview of these methods, including their advantages and disadvantages. The imaging of large sample areas can be performed using two methods based on the detection of transmitted electrons or BSE. Effective imaging using BSE requires special fixation and en bloc contrasting of samples. BSE imaging has resulted in the development of volume imaging techniques, including array tomography (AT) and serial block-face imaging (SBF-SEM). In AT, serial ultrathin sections are collected manually on a solid substrate such as a glass and silicon wafer or automatically on a tape using a special ultramicrotome. The imaging of serial sections is used to obtain three-dimensional (3D) information. SBF-SEM is based on removing the top layer of a resin-embedded sample using an ultramicrotome inside the SEM specimen chamber and then imaging the exposed surface with a BSE detector. The steps of cutting and imaging the resin block are repeated hundreds or thousands of times to obtain a z-stack for 3D analyses. Full article
(This article belongs to the Special Issue Microscopic Structure Research in Animals)
Show Figures

Figure 1

Other

Jump to: Research, Review

32 pages, 10512 KiB  
Case Report
Morphology and Histology of the Orbital Region and Eye of the Asiatic Black Bear (Ursus thibetanus)—Similarities and Differences within the Caniformia Suborder
by Wojciech Paszta, Karolina Goździewska-Harłajczuk and Joanna Klećkowska-Nawrot
Animals 2022, 12(7), 801; https://doi.org/10.3390/ani12070801 - 22 Mar 2022
Cited by 1 | Viewed by 3999
Abstract
In this study, we present first data concerning the morphological observations of the orbital region, eye tunics, upper and lower eyelids, superficial gland of the third eyelid with the third eyelid, and lacrimal gland in captive adult male Asiatic black bear. The following [...] Read more.
In this study, we present first data concerning the morphological observations of the orbital region, eye tunics, upper and lower eyelids, superficial gland of the third eyelid with the third eyelid, and lacrimal gland in captive adult male Asiatic black bear. The following research methods were used in the work: the eyeball morphometry, the orbital region description, macroscopic description, morphometric and histological analysis of the eye tunics and selected the accessory organs of the eye (Fontana–Masson, hematoxylin & eosin (H&E), Methyl-green-pyronin Y (MGP Y), Movat pentachrome, and picro-Mallory trichrome) as well as histochemical examination (PAS, AB pH 1.0, AB pH 2.5, AB pH 2.5/PAS and HDI). The eyeball of the Asiatic black bear was a spherical shape, while the periorbita was funnel/conical-shaped and the eye socket was of the open type. The cornea was absent of the Bowman’s membrane similar to all domestic dogs and some wild dogs. There were palisades of Vogt in the corneal limbus epithelium similar to the Canidae. Degenerative choroidal tapetum lucidum similar to ranch mink (Mustelidae) has been found. The pupil was big and round in shape. The ciliary muscle, dilatator and sphincter muscle were well developed, similar to the pinnipeds. The lens was biconvex round, similar to the Canidae. The retina was composed similarly to the diurnal terrestrial carnivores. In both eyelids were observed very well-developed tarsal glands, ciliary glands and sebaceous glands. The orbital zone in the eyelids was characterized by lymphoid follicles, diffuse lymphocytes and specialized high endothelial venules. In the anterior palpebral margin of the upper eyelid, soft and short eyelashes were observed, while in the lower eyelids they were absent. The third eyelid was T-shaped and composed of the hyaline tissue, and it contained CALT, similar to that in Canidae. The superficial gland of the third eyelid was a multilobar alveolar branched complex with seromucous nature, while the lacrimal gland was also a multilobar acinar branched complex gland, but producing a mucous–serous secretion. The results of our research indicate that the features of the anatomy of the eye and orbital region in Asiatic black bear are also typical of the Ursidae family. Moreover, a detailed analysis of the morphological eye region may be useful in comparative studies and veterinary diagnostics in this bear species. Full article
(This article belongs to the Special Issue Microscopic Structure Research in Animals)
Show Figures

Figure 1

Back to TopTop