Aeroelasticity, Volume IV

A special issue of Aerospace (ISSN 2226-4310). This special issue belongs to the section "Aeronautics".

Deadline for manuscript submissions: 20 September 2024 | Viewed by 1850

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
Interests: aeroelasticity; aircraft design; aerospace structural analysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Aviation’s contribution to global CO2 emissions has come under scrutiny since the early 2000s. For this purpose, new aircraft configurations with greater energy efficiency are being developed. One way to increase energy efficiency is to reduce structural weight and the increase the wing aspect ratio.

The resulting slender, lighter, and highly flexible structures are prone to exhibit aeroelastic instabilities and require radically different structural and manufacturing concepts. The extensive use of anisotropic materials can play a crucial role in enhancing aircraft performance with no additional penalties on weight. To this end, aeroelastic tailoring is a fundamental tool. Potential enabling technologies are functionally graded materials (FGM), variable angle tow (VAT), curvilinear stiffeners, and foldable wings. The ongoing revolution in computer-aided design and manufacturing technologies has broken down barriers and paved the way for a variety of innovative solutions. The use of additive manufacturing (AM) can lead to numerous advantages either in terms of time and costs saving or the possibility of increasing the mould’s complexity and customization.

Uncertainties associated with the prediction of flight loads and manufacturing processes are not negligible, especially during the conceptual design phases due to the lack of information about the new product to be designed. Methods to quantify adequate design margins to account for the various sources of uncertainty are essential in order to satisfy safety levels imposed by regulations. Finally, experimental tests will provide the opportunity to verify the effectiveness of the design choices.

Research in this field is characterized by a highly multidisciplinary approach including theoretical, computational, and experimental studies.

Potential topics include but are not limited to the following:

  • New design concepts for future aircrafts;
  • Advanced numerical model development for aero-structural analyses and process simulation;
  • Optimization of composite structures;
  • Innovative morphing wing concepts to improve aeroservoelastic behaviour and active wing technology;
  • Uncertainty in composite aerostructures’ design;
  • Aeroelastic experimental tests.

Dr. Enrico Cestino
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Aerospace is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Related Special Issues

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 1745 KiB  
Article
A Nonlinear Beam Finite Element with Bending–Torsion Coupling Formulation for Dynamic Analysis with Geometric Nonlinearities
by Cesare Patuelli, Enrico Cestino and Giacomo Frulla
Aerospace 2024, 11(4), 255; https://doi.org/10.3390/aerospace11040255 - 25 Mar 2024
Viewed by 602
Abstract
Vibration analysis of wing-box structures is a crucial aspect of the aeronautic design to avoid aeroelastic effects during normal flight operations. The deformation of a wing structure can induce nonlinear couplings, causing a different dynamic behavior from the linear counterpart, and nonlinear effects [...] Read more.
Vibration analysis of wing-box structures is a crucial aspect of the aeronautic design to avoid aeroelastic effects during normal flight operations. The deformation of a wing structure can induce nonlinear couplings, causing a different dynamic behavior from the linear counterpart, and nonlinear effects should be considered for more realistic simulations. Moreover, composite materials and aeroelastic tailoring require new simulation tools to include bending–torsion coupling effects. In this research, a beam finite element with bending–torsion coupling formulation is used to investigate the effects of the deflection of beam structures with different aspect ratios. The nonlinear effects are included in the finite element formulation. The geometrical effect is considered, applying a deformation dependent transformation matrix. Stiffness effects are introduced in the stiffness matrix with Hamilton’s Principle and a perturbation approach. The results obtained with the beam finite element model are compared with numerical and experimental evidence. Full article
(This article belongs to the Special Issue Aeroelasticity, Volume IV)
Show Figures

Figure 1

22 pages, 12009 KiB  
Article
Experiments of Lift-Bending Response on a Slender UAV Wing Structure with Control Surface under Extreme Flow Turbulence
by Wolduamlak Ayele, Victor Maldonado and Siva Parameswaran
Aerospace 2024, 11(2), 131; https://doi.org/10.3390/aerospace11020131 - 02 Feb 2024
Viewed by 854
Abstract
The aeroelastic response of lightweight low-speed aircrafts with slender wings under extreme flow turbulence intensity is not well understood. Experiments on a commercial unmanned aerial vehicle (UAV) with a 3 m wingspan and aspect ratio of 13.6 were performed in a large open-return [...] Read more.
The aeroelastic response of lightweight low-speed aircrafts with slender wings under extreme flow turbulence intensity is not well understood. Experiments on a commercial unmanned aerial vehicle (UAV) with a 3 m wingspan and aspect ratio of 13.6 were performed in a large open-return wind tunnel with extreme flow turbulence intensity of ≈10%. The wing bending displacement and the flow beneath the wing were measured by using laser-displacement sensors and tomographic particle image velocimetry (PIV) techniques, respectively. The unsteady lift produced by the wing was also measured by using a high-capacity load cell at an angle of attack of two degrees for three freestream velocities of 13.4 m/s, 17.9 m/s, and 26.8 m/s, representing the UAV’s stall speed, a speed approximately equal to the cruise speed, and a speed considerably higher than the cruise speed, respectively. It was found that a high flow turbulence intensity with large integral length scales relative to the wing chord plays a dominant role in the large unsteady lift and wing displacements measured. The power spectral density (PSD) of the wing structural vibration shows that flow shedding from the wing and the integral length scales have a significant impact on the overall power inherent in the bending vibration of the wing. Computations of the vorticity isosurfaces in the flow measurement volume surrounding the aileron reveal a striking observation: an aileron deflection of 10° becomes less effective in producing additional spanwise vorticity, which is proportional to circulation and lift at 26.8 m/s since the freestream already has elevated levels of vorticity. A paradigm shift in design is suggested for light aircraft structures with slender wings operating in highly turbulent flow, which is to employ multiple control surfaces in order to respond to this flow and mitigate large bending or torsion displacements and the probability of structural failure. Full article
(This article belongs to the Special Issue Aeroelasticity, Volume IV)
Show Figures

Figure 1

Back to TopTop